跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭睿彬
研究生(外文):Jui-Pin Hsiao
論文名稱:開發奈米載體應用於化學治療合併基因治療對抗藥性細胞之評估
論文名稱(外文):Development of nanoparticles with chemotherapeutic/siRNA dual functions against multidrug-resistant cancer cells
指導教授:謝銘鈞謝銘鈞引用關係
指導教授(外文):Ming-Jium Shieh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:46
中文關鍵詞:基因治療太平洋紫杉醇聚亞乙胺聚己內酯聚乙二醇小干擾核糖核酸
外文關鍵詞:Gene therapypaclitaxelPolyethyleniminePoly (e-caprolactone)Methoxypolyethylene glycolsiRNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了實現合併基因治療與化學治療在對付多重抗藥性癌細胞上,我們開發可同時輸送基因與化療藥物的奈米載體。藉由將mPEG-PCL共聚高分子接枝在PEI高分子上,合成出mPEG-PCL-PEI三團聯高分子。我們使用核磁共振儀與凝膠滲透層析儀分析所合成高分子聚合物,並使用pyrene螢光物質來研究合成的高分子聚合物形成奈米粒子其臨界微胞濃度(CMC)。mPEG-PCL-PEI三團聯高分子形成微胞後使用動態雷射光散射儀(DLS)與穿透式電子顯微鏡(TEM) 來觀察奈米粒子大小、表面電位、形態,發現包覆太平洋紫杉醇的大小為226 nm,與DNA混合後的奈米粒子為238 nm。我們進一步利用流式細胞儀分析mPEG-PCL-PEI三團聯高分子微胞的基因轉殖效率,結果發現在轉殖綠色螢光蛋白基因方面,在抗藥性細胞MCF-7/ADR細胞株轉殖效果會比單獨PEI 25K好。在實驗中,我們轉殖 MDR-1 小干擾RNA 能夠抑制 50% P-glycoprotein 表現。我們並使用MCF-7wt 與 MCF-7/ADR 細胞株進行雙功能微胞毒殺效果測試。由這些結果顯示出所合成mPEG-PCL-PEI三團聯高分子載體同時具有基因治療與化學治療的潛力。



To realize gene therapy and chemotherapy in multi-drug-resistant cancer cell, we develop carriers which can co-delivery gene and chemotherapy drug. The mPEG-PCL-PEI (M510i) tri-block polymers were synthesized by use mMPEG-PCL copolymer modified to PEI. The characteristic of these tri-block polymers were evaluated by 1H nuclear magnetic resonance and gel permeation chromatography. The critical micelle concentration (CMC) of micelle was evaluated by using pyrene as fluorescence probe. The particle size, zeta potential, and morphology of micelle was studied by dynamic light scattering and transmission electron microscopy. The results indicate that the paclitaxel loaded micelles and DNA complexes with micelles were 226 nm and 238 nm. The gene transfection efficiency was evaluated by used flow cytometry to evaluate green fluorescence protein (GFP) expression. The gene transfection efficiency performed better than PEI 25K in MCF-7 ADR cell. In siRNA experiments, we can transfect MDR-1 siRNA to silence P-glycoprotein expression 50%. In viro cytotoxicity, dual agent micelle of were tested of MCF-7 wt and MCF-7 ADR by MTT assy. These results suggested the PEG-PCL-PEI tri-block polymer as potential carriers for gene therapy and chemotherapy.

中文摘要......................................................I
英文摘要....................................................II
1. Intruductoin..................................................1
2. Materials and Methods.......................................4
2.1 Materials..................................................................5
Materials for Cell Culture...................................................6
2.2 synthesis of PEG-PCL-PEI tri-block polymer.................................7
2.2.1 synthesis of amphiphilic block copolymer..................................7
2.2.2 Tosylation of block copolymer...........................................7
2.2.3 Conjugation of Diblock Copolymers onto hy-PEIs..........................8
2.3 tri-block polymers characterization..........................................8
2.4 Determination of critical micelle concentration (CMC).......................8
2.5 Preparation of micelles...................................................9
2.5.1 mPEG-PCL-PEI tri-block micelle........................................9
2.5.2 Paclitaxel loaded mPEG-PCL-PEI tri-block micelle........................9
2.6 Drug- loading efficiency.................................................10
2.7 Preparation of polyplexes................................................11
2.8 Gel retardation study....................................................11
2.9 Particle Characterization.................................................11
2.9.1 Particle size and zeta potential analyses...................................11
2.9.2 Transmission electron microscopy.......................................12
2.10 In vitro release profile...................................................12
2.11 cell culture.............................................................12
2.12 In vitro gene transfection................................................13
2.13 In vitro siRNA transfection to inhibit P-GP expression.....................14
2.14 In vitro cytotoxicity....................................................15
3. Results and discussions....................................................17
3.1 synthesis of mPEG-PCL-PEI tri-block polymer.............................17
3.2 Measurements of critical micelle concentration and micelles Characterization.................18
3.3 Drug- loading micelles Characterization....................................19
3.4 DNA/Drug- loading micelles complexes Characterization....................19
3.5 Gel retardation study............................................20
3.6 In vitro release profile........................................20
3.7 In vitro gene transfection.......................................21
3.8 In vitro siRNA transfection to inhibit P-GP expression.......................22
3.9 In vitro cytotoxicity......................................................23
4. Conclusions...............................................................24
5. Reference.................................................................26
Scheme 1. Reaction scheme of Synthesis of mPEG-PCL-PEI tri-block polymers....................32
Table 1 Characteristics of M510 and M510i polymer............................33
Table 2. Characteristics of M510 and M510i micelles............................33
Table 3. Characteristics of paclitaxel loaded M510i micelles......................34
Table 4. Ninhydrin assay of PEI 25K and M510i micelles........................34
Fig.1. 1H NMR of PEG-PCL block polymer....................................35
Fig.2. 1H NMR of PEG-PCL-PEI tri-block polymer.............................35
Fig.3. The CMC of M510 (A) M510i (B).......................................36
Fig 4.TEM morphology of paclitaxel loaded micells (A) DNA/paclitaxel micelles complexes N/P =3 (B)........................................................37
Fig.5. Particle size and zeta potential of DNA/ drug loaded micelle complex particle.....................................................................38
Fig.6. Agarose gel electrophoresis of DNA/polymer complexes at various N/P ratios.......................................................................39
Fig.7. In vitro paclitaxel release profile from PTX/M510i micelles at pH 5.0 and pH 7.4.........................................................................40
Fig.8. In vitro transfection MCF-7 ADR cells of PEI 25K (A) M510i (B)..........41
Fig.9. In vitro siRNA transfection to inhibit P-GP expression.....................41
Fig.10. Cytotoxicity of M510i and PEI 25K in MCF-7 ADR......................42
Fig.11. In vitro cytotoxicity of Free PTX in MCF-7 wt and MCF-7 ADR............43
Fig.12. In vitro cytotoxicity of PTX, PTX-loaded micelles in MCF-7 wt............44
Fig.13. In vitro cytotoxicity of PTX, PTX-loaded micelles, and DNA/PTX-loaded micelles complexes in MCF-7 ADR...........................................45
Fig. 14 Evaluation of cytotoxicity of paclitaxel administered with and without MDR-1 small interfering RNA (siRNA) to MCF-7 ADR cell.............................46

[1] Endicott JA, Ling V. The biochemistry of P-glycoprotein—mediated multidrug resistance. Annu Rev Biochem 1989;58:117– 37.
[2] Shapiro AB, Ling V. The mechanism of ATP-dependent multidrug transport by P-glycoprotein. Acta Physiol Scand, Suppl 1998;643: 227–234.
[3] Yongzhong Wang, Li Yuc, Limei Han, Xianyi Sha, Xiaoling Fang., Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. International Journal of Pharmaceutics 337 (2007) 63–73
[4] Collnot, E.M., et al., Influence of vitamin E TPGS poly(ethylene glycol) chain length on apical. efflux transporters in Caco-2 cell monolayers. Journal of Controlled Release, 2006. 111(1-2): p. 35-40.
[5] Dintaman, J.M. and J.A. Silverman, Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharmaceutical Research, 1999. 16(10): p. 1550-1556.
[6] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–8.
[7] Xiao-Bing Xiong, Hasan Uludag, Afsaneh Lavasanifar. Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials 30 (2009) 242–253
[8] Sunita Yadav • Lilian E. van Vlerken Steven R. Little • Mansoor M. Amiji Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmacol (2009) 63:711–722
[9] Robert C. Carlisle, Martin L. Read, Margreet A. Wolfert, Leonard W. Seymour Self-assembling poly(L-lysine):DNA complexes capable of integrin-mediated cellular uptake and gene expression. Colloids and Surfaces B: Biointerfaces 16 (1999) 261–272
[10] José Luís Santos, Elena Oramas, Ana Paula Pêgo, Pedro Lopes Granja, Helena Tomás.Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. Journal of Controlled Release 134 (2009) 141–148
[11] W.T. Godbey , Kenneth K. Wu , Antonios G. Mikos. Poly(ethylenimine) and its role in gene delivery. Journal of Controlled Release 60 (1999) 149–160
[12] Janjira Intra, Aliasger K. Salem. Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo. Journal of Controlled Release 130 (2008) 129–138

[13] Hyun Hee Ahna, Min Suk Lee, Mi Hee Cho, Yu Na Shin, Jung Hw Lee ,Kyung Sook Kim, Moon Suk Kim, Gilson Khang, Ki Chul Hwang, Il Woo Lee, Scott L. Diamond, Hai Bang Lee. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids and Surfaces A: Physicochem. Eng. Aspects 313–314 (2008) 116–120
[14] Bing Liang, Ming-Liang He, Zhong-Peng Xiao, Yi Li, Chu-yan Chan , Hsiang-Fu Kung, Xin-Tao Shuai, Ying Peng Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochemical and Biophysical Research Communications 367 (2008) 874–880
[15] Rohidas Arotea, Tae-Hee Kima, You-Kyoung Kima, Soon-Kyung Hwangb, Hu-Lin Jianga, Ho-Hyun Songa, Jae-Woon Nahc, Myung-Haing Chob, Chong-Su Choa, A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials 28 (2007) 735–744
[16] So Yeon Kim, Young Moo Lee. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers. Biomaterials 22 (2001) 1697}1704
[17] Xintao Shuaia, Hua Aia, Norased Nasongklab, Saejeong Kima, Jinming Gaoa. Micellar carriers based on block copolymers of poly(q-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. Journal of Controlled Release 98 (2004) 415– 426
[18] Eun Kyoung Park, Sang Bong Lee, Young Moo Lee Preparation and characterization of methoxy poly(ethylene glycol)/poly(e-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26 (2005) 1053–1061
[19] Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker RJ, Fruehauf JP: Levels of multidrug resistance (MDR1) P-glycoprotein
expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 4: 389–398, 1998
[20] Zhou SB, Deng XM, Yang H. Biodegradable
poly(epsilon-caprolactone)-poly-(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials 2003;24(20):3563–70.
[21] Benjaporn Treetharnmathurot, Chitchamai Ovartlarnporn, Juraithip Wungsintaweekul, Ruth Duncand, Ruedeekorn Wiwattanapatapee. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGlyated trypsin. International Journal of Pharmaceutics 357 (2008) 252–259
[22] Tirsta Ehrenfreund-Kleinmana, Jacob Golenserb, Abraham J. Domba. Conjugation of amino-containing drugs to polysaccharides by tosylation: amphotericin B–arabinogalactan conjugates. Biomaterials 25 (2004) 3049–3057
[23] Lo CL, Huang CK, Lin KM, Hsiue GH. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery. Biomaterials 2007;28 (6):1225–35.
[25] Sushma K., Mansoor A., Preparation and evaluation of Thiol-Modifiled Gelatin Nanoparticles for intracellular DNA delivery in Response to Glutathione, Bioconjugate Chem.,16(2005), 1423-1432
[26] Hu Y, Xie JW, Tong YW, Wang CH. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Release 2007;118(1):7–17.
[27] Yu Liu, Juliane Nguyen, Terry Steele, Olivia Merkel, Thomas Kissel. A new synthesis method and degradation of hyper-branched polyethylenimine grafted polycaprolactone block mono-methoxyl poly (ethylene glycol) copolymers (hy-PEI-g-PCL-b-mPEG) as potential DNA delivery vectors
[28] H. Yu, X. Chen, T. Lu, J. Sun, H. Tian, J. Hu, Y. Wang, P. Zhang, X. Jing, Biomacromolecules 2007, 8, 1425.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top