跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周英樑
研究生(外文):Ying-Liang Chou
論文名稱:高+Gz暴露後視覺生理參數之變化
論文名稱(外文):The Changes of Ocular Physiological Parameters after High-G Exposure
指導教授:周崇龍
指導教授(外文):Chung-Long Chou
學位類別:碩士
校院名稱:國防醫學院
系所名稱:航太醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:眼內壓視力高+Gz暴露
外文關鍵詞:intraocular pressurevisual acuityhigh-G exposure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前言:
視覺功能在高+Gz力下之變化已經被廣泛的研究,但是高+Gz力暴露(+Gz exposure)後的相關視覺研究卻不盡詳盡。本實驗即在探討視覺生理參數,如視力(visual acuity)、眼內壓(intraocular pressure)及屈光度(refraction)在高+Gz力前後的變化。
材料與方法:
此實驗共有十九個受測者,分成兩組。十三個為實驗組(+Gz暴露),六個為對照組。其中實驗組是以離心機測試來達到高+Gz暴露的目的。受測者在高+Gz暴露前三十分,暴露後兩分、十分及二十分,分別接受視力、眼內壓及屈光度檢測並記錄之。受測者的G耐力至少需達6G以上。
結果:
兩位受測者因G耐力小於6G而不予採用。兩組的屈光度在暴露前後並無明顯變化(暴露前及暴露後2、10、20分之球面像差分別為-5.6±2.2D、-5.4±2.1D、-5.5±2.3D、-5.4±2.2D;柱狀像差及對照組的數值亦無變化);最佳矯正視力(Best Spectacle-corrected Visual Acuities, BSCVA)以Log MAR來表示,在高+GZ暴露後的三個時間點較暴露前有顯著改善(p<0.05;對照組則無變化);而眼內壓在暴露後較暴露前明顯降低(暴露前及暴露後2分之眼內壓分別為14.6 ± 2.3 mm Hg及11.9 ±2.0 mm Hg,p < 0.05;10、20分之data與2分鐘相符,對照組則無變化)。
結論:
眼內壓明顯降低可能導因於高+Gz暴露,而這亦可能是造成視力改善的原因之一。

Introduction. The effect of sustained high-G exposure on ocular hemodynamics and visual function is not clear. Visual biological parameters could vary after high-G exposure.
Material & Methods. Nineteen subjects were divided into two groups: a centrifuge group (high-G exposure, n=13) and a control group (n=6). Intraocular pressure (IOP), visual acuity and manifest refraction were measured 30 minutes before centrifugation, 2 minutes, 10 minutes and 20 minutes after centrifugation, respectively.
Results. Two subjects were excluded from the experiment because of G tolerance less then 6G. There was no statistical difference in refractive errors in both groups. Most subjects in centrifuge group improved their best corrected visual acuity (BCVA) after high-G exposure. Also high-G exposure made a significant effect on intraocular pressure.
Conclusion. IOP reduced after high-G exposure, it might be related to the improvement of visual function.

目錄.............................................................I
表次............................................................III
圖次............................................................ IV
中文摘要........................................................一
英文摘要........................................................三
第一章 緒論....................................................1
第一節 研究背景.............................................1
第二節 我國飛行員面臨之視覺問題.......................8
第三節 視覺生理參數......... .. .........................13
第四節 研究動機...........................................19
第五節 研究目的...........................................21
第二章 材料與方法............................................22
第一節 研究對象..........................................22
第二節 研究儀器.........................................24
第三節 研究模式及方法..................................26
第四節 眼科學檢查.......................................28
第五節 人體離心機試驗..................................31
第六節 資料分析..........................................34
第三章 研究結果...............................................35
第一節 高+GZ暴露對屈光度的影響....................36
第二節 高+GZ暴露對視力的影響......................38
第三節 高+GZ暴露對眼內壓的影響....................40
第四節 高+GZ暴露對屈光度的影響....................42
第四章 實驗討論...............................................43
第一節 高+GZ暴露對眼內壓的影響....................43
第二節 高+GZ暴露對視力的影響......................45
第三節 視力以Log MAR表示之討論.................48
第五章 結論...................................................50
參考文獻.......................................................51
表  次
表3.1 Subject Information...................................58
表3.2 Effect of High-G Exposure on Refraction............58
表3.3 Effect of High-G Exposure on Refraction............59
表3.4 Change in BSCVA after High-G Exposure...........60
表3.5 The Change Rate of VSCVA after High-G Exposure
…..………….…………..………………………….….61
表4.1 視力的不同表示法.....................................61
圖  次
圖1.1 視覺傳遞路徑 — 光學部分............................62圖1.2 視覺傳遞路徑 — 中樞神經系統部分.................62
圖2.1 法國LATECOERE 101人體離心機(Human Centrifuge) ……………………………………………………… 63
圖2.2 投射式視力表...........................................64
圖2.3 Snellen E視力表........................................64
圖2.4 驗光機...................................................64
圖2.5 角膜地形圖儀…………………………………………64
圖2.6 非接觸式眼壓計………………………………………65
圖2.7裂隙燈…………………………………………………..65
圖2.8 直接眼底鏡……………………………………………65
圖2.9 實驗模式 ……………………………………………66
圖2.10 Snellen E視力表 …………………………………67
圖2.11 角膜地形圖 ………………………………………67
圖2.12 抗G衣 ………………………………………………68
圖2.13 漸增型G耐力訓練(gradual onset run)……………69
圖2.14 遽增型G耐力訓練(rapid onset run)………………………………………………70
圖2.15 遽增型G耐力訓練(rapid onset run)……………71
圖3.1 球面屈光度(spherical equivalent)在高+GZ環境暴露前後的改變 ……………………………………….72
圖3.2 柱狀屈光度(cylindrical equivalent)在高+GZ環境 暴露前後的改變 .…………………………………….73
圖3.3 視力(Log MAR)在高+GZ環境暴露前後的改變..74
圖3.4 眼內壓在高+GZ環境暴露前後的改變 ……………75
圖3.5 中心角膜厚度在高+GZ環境暴露前後的改變 ……76
圖3.6 角膜最薄部分在高+GZ環境暴露前後的改變 …….77
圖5.1 LogMAR 視力表………………………………………78

1. Aerospace Ophthalmology, vol 1, 2-1, 1998.
2. Anderson, D. A., and Grant, W. M.: The Influence of position on intraocular pressure. Invest. Ophthalmol. 12:204, 1973.
3. Anonymous. Ocular effects of gravity inversion. JAMA. 254(6):755-6, 1985 Aug 9.
4. Avunduk AM. Yilmaz B. Sahin N. Kapicioglu Z. Dayanir V. The comparison of intraocular pressure reductions after isometric and isokinetic exercises in normal individuals. Ophthalmologica. 213(5):290-4, 1999.
5. Bruce Bohnker. Primary Flight Training Performance of Student Naval Aviators with Vision Waivers. Aviat. Space Environ. Med. 62(2):162-4, 1991 Feb.
6. Burton RR. A conceptual model for predicting pilot group G tolerance for tactical fighter aircraft. Aviat. Space Environ. Med. 57(8):733-44, 1986 Aug.
7. Burton RR. Guidelines for a research and development (R&D) program for high sustained G. Physiologist. 36(1 Suppl):S94-7, 1993 Feb.
8. Chang AW, Tsang AC, Contreras JE, Huynh PD, Calvano CJ, Crnic-Rein TC, Thall EH. J Cataract Refract Surg. 2003 Jun;29(6):1204-10.
9. Chromiak JA. Abadie BR. Braswell RA. Koh YS. Chilek DR. Resistance training exercises acutely reduce intraocular pressure in physically active men and women. Journal of Strength & Conditioning Research. 17(4):715-20, 2003 Nov.
10. Clinical Procedures for Ocular Examination. 3/e. 2004.
11. Convertino VA. Investigator: Convertino VA. High sustained +Gz acceleration: physiological adaptation to high-G tolerance. Journal of Gravitational Physiology: a Journal of the International Society for Gravitational Physiology. 5(1):P51-4, 1998 Jul.
12. Daumann FJ. Draeger J. Aviation and space flight ophthalmology. Ophthalmologe. 90(4):380-6, 1993 Aug.
13. Dennis RJ. Woessner WM. Miller RE 2nd. Gillingham KK. Rigid gas-permeable contact lens wear during + Gz acceleration. Aviat. Space Environ. Med. 61(10):906-12, 1990 Oct.
14. Diana Weedman Molavi, PhD at the Washington University School of Medicine. Department of Anatomy and Neurobiology Basic visual pathway 1997
15. Dickerman RD. Smith GH. Langham-Roof L. McConathy WJ. East JW. Smith AB. Intra-ocular pressure changes during maximal isometric contraction: does this reflect intra-cranial pressure or retinal venous pressure?. Neurological Research. 21(3):243-6, 1999 Apr.
16. Douglas J. Rhee Glaucoma: Color Atlas and Synopsis of Clinical Ophthalmology 2003.
17. Duzman E. Ober M. Scharrer A. Leopold IH. A clinical evaluation of the effects of topically applied levobunolol and timolol on increased intraocular pressure. American Journal of Ophthalmology. 94(3):318-27, 1982
18. Ernsting J. Unconsciousness in flight and its prevention. Transactions of the Medical Society of London. 107:12-20, 1990-91.
19. Florence G. Bonnier R. Riondet L. Plagnes D. Lagarde D. Van Beers P. Serra A. Etienne X. Tran D. Cerebral cortical blood flow during loss of consciousness induced by gravitational stress in rhesus monkeys. Neuroscience Letters. 305(2):99-102, 2001 Jun 8.
20. Florence G. Roucher P. Vallet R. Lemenn M. Charbonne R. Seylaz J. Cortical blood flow and +Gz acceleration in conscious rabbits. Journal of Applied Physiology. 76(6):2527-34, 1994 Jun.
21. Flynn WJ. Block MG. Tredici TJ. Provines WF. Effect of positive acceleration (+Gz) on soft contact lens wear. Aviat. Space Environ. Med.58(6):581-7, 1987 Jun.
22. Friberg TR. Ocular effects of gravity inversion. Western Journal of Medicine. 143(4):530-1, 1985 Oct.
23. Friberg TR. Sanborn G. Optic nerve dysfunction during gravity inversion. Pattern reversal visual evoked potentials. Archives of Ophthalmology. 103(11):1687-9, 1985 Nov.
24. Friberg, T. R., and Weinreb, R. N.: Ocular manifestations of gravity inversion. JAMA 253:1755, 1985.
25. Fundamentals of Aerospace Medicine. 3/e. 2003.
26. Gillingham KK. G-tolerance standards for aircrew training and selection. Aviat. Space Environ. Med. 58(10):1024-6, 1987 Oct.
27. Glaister DH. Current and emerging technology in G-LOC detection: noninvasive monitoring of cerebral microcirculation using near infrared. Aviat. Space Environ. Med. 59(1):23-8, 1988 Jan.
28. Grether WF. Acceleration and human performance. Aerospace Medicine. 42(11):1157-66, 1971 Nov.
29. Haines RF. Effect of passive 70 degrees head-up tilt on peripheral visual response time. Journal of Applied Physiology. 34(3):329-33, 1973 Mar.
30. Han WQ. Liu HF. Zhao FT. Ma RS. Cheng HW. Ni HY. Changes of human cerebral blood flow velocity and blood oxygen saturation under lower body negative pressure in upright seated position. Hangtian Yixue Yu Yixue Gongcheng/Space Medicine & Medical Engineering. 15(3):170-3, 2002 Jun.
31. Jaron D. Moore T. Shankara Reddy BR. Hrebien L. Kepics F. Reflectance photoplethysmography as an adjunct to assessment of gravitational acceleration tolerance: preliminary findings. Aviat. Space Environ. Med. 58(6):604-12, 1987 Jun.
32. Jack T. Holladay. Visual acuity measurements. Jr. of Cataract Refractive Surgery. Vol. 30 No.2: 114-121, Feb. 2004
33. Jack T. Holladay. Proper method for calculating average visual acuity. Jr. of Refractive Surgery Vol.13:388-391, July/August 1997.
34. Katkov VE. Chestukhin VV. Lapteva RI. Yakovleva VA. Mikhailov VM. Zybin OK. Utkin VN. Central and cerebral hemodynamics and metabolism of the healthy man during head-down tilting. Aviat. Space Environ. Med. 50(2):147-53, 1979 Feb.
35. Kruk R. Regan D. Visual test results compared with flying performance in telemetry-tracked aircraft. [Journal Article] Aviation Space & Environmental Medicine. 54(10):906-11, 1983 Oct.
36. Lassen NA, Christensen MS. Physiology of cerebral blood flow. Br J Anesth 1976; 48:719-34.
37. Laulin MH, Burns JW, Parnell MJ. Regional distribution of cardiac output in unanesthetized baboons during +Gz stress with and without anti-G suit. Aviat Space Environ Med 1982, 53:133-41.
38. Leighton DA. Phillips CI. Effect of moderate exercise on the ocular tension. British Journal of Ophthalmology. 54(9):599-605, 1970 Sep.
39. Lyons TJ. Women in the fast jet cockpit--aeromedical considerations. Aviat. Space Environ. Med. 63(9):809-18, 1992 Sep.
40. Macri FJ. Cevario SJ. Ciliary ganglion stimulation. I. Effects on aqueous humor inflow and outflow. Investigative Ophthalmology. 14(1):28-33, 1975 Jan.
41. Martin B. Harris A. Hammel T. Malinovsky V. Mechanism of exercise-induced ocular hypotension. Investigative Ophthalmology & Visual Science. 40(5):1011-5, 1999 Apr.
42. Moskalenko YE. Functional steadiness of the cerebral circulatory system under altered gravitational conditions. Aviat. Space Environ. Med. 52(3):159-61, 1981 Mar.
43. Myron Y. Jay S. D. Ophthalmology 1999
44. Newman DG. Callister R. Analysis of the Gz environment during air combat maneuvering in the F/A-18 fighter aircraft. Aviat. Space Environ. Med.70(4):310-5, 1999 Apr.
45. Nilsson K. Rengstorff RH. Continuous wearing of Duragel contact lenses by Swedish air force pilots. American Journal of Optometry & Physiological Optics. 56(6):356-8, 1979 Jun.
46. Paige LD. Kama WN. Visual acuity in relation to body orientation and G-vector. Journal of Engineering Psychology. 4(2):45-56, 1965.
47. Perkins JR: F-16. Flying Safety 1989; January: 20-25.
48. Pournaras CJ. Riva CE. Studies of the hemodynamics of the optic head nerve using laser Doppler flowmetry. Journal Francais d Opthalmologie. 24(2):199-205, 2001 Feb.
49. Qureshi IA. Xi XR. Huang YB. Wu XD. Magnitude of decrease in intraocular pressure depends upon intensity of exercise. Korean Journal of Ophthalmology. 10(2):109-15, 1996 Dec.
50. Qureshi IA. Xi XR. Wu XD. Zhang J. Shiarkar E. The effect of physical fitness on intraocular pressure in Chinese medical students. Chung Hua i Hsueh Tsa Chih - Chinese Medical Journal. 58(5):317-22, 1996 Nov.
51. Qureshi IA. Xi XR. Wu XD. Zhang J. Shiarkar E. The effect of physical fitness on intraocular pressure in Chinese medical students. Chung Hua i Hsueh Tsa Chih - Chinese Medical Journal. 58(5):317-22, 1996 Nov.
52. Schwartz R. Stern C. Klemm M. Draeger J. Winter R. Ophthalmologe. 93(1):76-9, 1996 Feb.
53. Shahed AR. Barber J. Werchan PM. Acceleration-induced effects on baboon blood chemistry. Aviat. Space Environ. Med. 64(7):631-5, 1993 Jul.
54. Shender BS. Dubin SE. Contribution of cerebrospinal fluid to rheoencephalographic waveforms during hypoxic and +Gz stress. Aviat. Space Environ. Med. 65(6):510-7, 1994 Jun.
55. Smith, T. J., and Lewis, J.: Effect of inverted body position on intraocular pressure (correspondence). Am. J. Ophthalmol. 99:618, 1985.
56. Thomas A. Optics, Refraction, and Contact Lenses. American Academy of Ophthalmology. 2002-2003.
57. Tillisch JH: Internal medicine: It’s accomplishments and failures in aviation. Aerospace Med 1960; 31: 621-628.
58. Tipton DA. A review of vision physiology. Aviat. Space Environ. Med.55(2):145-9, 1984 Feb.
59. To CH. Kong CW. Chan CY. Shahidullah M. Do CW. The mechanism of aqueous humour formation. Clinical & Experimental Optometry. 85(6):335-49, 2002 Nov.
60. Werchan PM. Schadt JC. Fanton JW. Laughlin MH. Cerebral and spinal cord blood flow dynamics during high sustained +Gz. Aviat. Space Environ. Med. 65(6):501-9, 1994 Jun.
61. Werchan PM. Schadt JC. Fanton JW. Laughlin MH. Total and regional cerebral blood flow during recovery from G-LOC. Aviat. Space Environ. Med.67(8):751-8, 1996 Aug.
62. Whinnery JE. Shender BS. The opticogravic nerve: eye-level anatomic relationships within the central nervous system. Aviat. Space Environ. Med. 64(10):952-4, 1993 Oct.
63. Whinnery JE. Technique for simulating G-induced tunnel vision. Aviat. Space Environ. Med.50(10):1076, 1979 Oct. .
64. William F. Ganong Review of Medical Physiology. 20th edition. 2001.
65. Wood EH. Code CF. Baldes EJ. Partial supination versus Gz protection. Aviat. Space Environ. Med.61(9):850-8, 1990 Sep. (7):699-706, 1987 Jul.
66. Aronowitz JD. Brubaker RF. Effect of intraocular gas on intraocular pressure. Archives of Ophthalmology. 94(7):1191-6, 1976.
67. www.dyhp.com.cn. 江西省大余縣人民醫院醫療網頁。
68. 江茂亮、吳怡昌、周崇龍:我國空軍現役飛行員生視覺功能之探討,2003。
69. 陳明華、周崇龍、張正忠:屈光矯正手術後高階視覺品質之評估。
70. 林和鳴: 眼科學精義,第六版,1988。
71. 吳怡昌、周崇龍:國軍空勤人員實施角膜屈光矯正手術之可行性,九十年8月至9月參訪美國軍方航空醫學研究機構之報告書,2001。
72. 溫德生: 低G昏迷的警惕與防範。航空醫學暨科學期刊;2001;15(1) : 9-20。
73. 蔡玉敏、溫德生 : 飛行聲體適能與人體離心機G耐力的研究。航空醫學暨科學期刊;2001;15(1) : 29-39。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top