跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 18:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳伯任
研究生(外文):Chen, Po-Jen
論文名稱:雷射捕陷應用於溫敏聚合物之相轉變及分析化學之研究
論文名稱(外文):Polymer showing temperature-dependent phase transition: Laser trapping and its application to analytical chemistry
指導教授:李耀坤李耀坤引用關係增原宏
指導教授(外文):Li, Yaw KuenMasuhara Hiroshi
口試委員:李耀坤增原宏王建隆三浦篤志
口試委員(外文):Li, Yaw KuenMasuhara HiroshiWang, Chien-LungMiura Atsushi
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:63
中文關鍵詞:雷射捕陷溫敏聚合物相轉變
外文關鍵詞:laser trappingthermoresponsive polymerphase transition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
此研究主要意在了解溫敏聚合物-PIPOZ 於 PIPOZ/H2O 以及 PIPOZ/BuOH/H2O 之二元,三元溶劑系統中於雷射誘導下產生相分離(LIPS)之行為,並進一步應 用於分析化學之微量萃取技術。
在此研究中,我們示範了利用雷射捕陷技術於 PIPOZ/H2O 和 PIPOZ/BuOH/H2O 之二元,三元溶液系統內之特定空間中誘發單一微粒子的形成,並且穩定地將微 粒子捕捉在雷射之焦點上。於研究中我們亦發現,雷射誘發微粒所需的能量,三 元系統相較於二元系統其能量需求降低了非常多,此一結果充分的反映了 PIPOZ 的 cononsolvency 效應。除此之外,在三元溶液系統中所形成的微粒子與在二元 溶液系統形成的微粒子非常不同,三元溶液系統之微粒子在雷射照射停止後並沒 有如二元系統般迅速的消失。
另外,在微量萃取的部份,我們利用上述之 LIPS 技術進行了將染料分子羅丹 明 B 以 PIPOZ 之微相分離之微量萃取。所得的結果顯示,利用雷射 LIPS 技術所 萃取的萃取效率相比於普通萃取有相當程度的提升。此效率之提升可以被歸因為 形成之萃取微顆粒成分之疏水程度提高以及雷射染料分子的雷射光壓收集現象 之協同現象。
We studied laser-induced phase separation (LIPS) behavior of thermoresponsive polymer, PIPOZ, in PIPOZ/H2O binary and PIPOZ/BuOH/H2O ternary solutions. Locally-induced single microparticle formation in PIPOZ/H2O binary and PIPOZ/BuOH/H2O ternary solutions by laser revealed single microparticle can be formed and stably trapped at the focal spot of trapping laser. As reflecting cononsolvency of PIPOZ in ternary solution, microparticle formation can be achieved with much lower laser power in ternary solution than that required in binary solution. The particle formed in ternary solution is different from that formed in binary solution which did not disappear quickly even trapping-laser was turned-off.
We demonstrated microphase extraction of ultratrace dye molecule, RhB, by using single microparticle formed by LIPS. Extraction to the microparticle showed better extraction efficiency of RhB than that observed in bulk solution. Improved extraction efficiency can be attributed to the cooperative effect of hydrophobicity increase in the particle and concentration of the solute molecules to the particle by exerted photon pressure of the trapping laser beam.
Abstract ... i
中文摘要...ii
Acknowledgements...iii
Table of Content…v
List of Figures and Tables…vii
Chapter 1 Introduction...1
1.1 Phase transition/separation of thermoresponsive polymers …1
1.1.1 Poly (2-isopropyl-2-oxazoline) (PIPOZ) and its phase transition/separation …3
1.1.2 Cononsolvency effect of thermoresponsive polymer...6
1.2 Laser trapping …7
1.2.1 History of laser trapping…7
1.2.2 Principle of laser trapping…8
1.2.3 Laser trapping induced assembly formation ...11
1.3 Laser-induced photothermal phase transition/separation and microphase extraction …13
1.4 Aim of this study ...16
Chapter 2 Materials and methods …17
2.1Materials …17
2.2 Microscope set up...19
Chapter 3 Phase transitions of PIPOZ in binary and ternary bulk solutions…………….22
3.1 Thermally-induced liquid-liquid phase transition/separation of PIPOZ in binary solution …22
3.2 Phase transition/separation behavior of PIPOZ in ternary solution…23
3.3 Crystallization of PIPOZ in bulk solution …25
3.4 Section summary ...28
Chapter 4 Laser-induced local phase transition/ separation of PIPOZ solutions …29
4.1 Laser-induced phase transition/separation of PIPOZ in binary solution …29
4.1.1 Laser-induced phase transition/separation of PIPOZ in H2O...29
4.2 Laser-induced phase transition/separation in PIPOZ/BuOH/H2O ternary solution …32
4.3 Reversible and remote particle expansion/contraction control of long-lasting small stable particle formed in ternary system ...37
4.3.1 Reversible particle expansion/contraction of long-lasting small stable particle …37
4.3.2 Remotely-induced particle expansion/contraction of small stable
particle ….38
4.4 Section summery …43
5. Ultratrace extraction of solute molecules in PIPOZ binary and ternary solutions …45
5.1 Extraction of RhB by PIPOZ in bulk solution…45
5.2 Microphase extraction of RhB by PIPOZ microparticle…48
5.2.1 Microphase extraction of RhB in binary solution …49
5.2.2 Extraction of RhB in ternary system….50
5.3 Section summary …54
Summary…55
References ... 56
[1] M. A. Ward, T. K. Georgiou, “Thermoresponsive Polymers for Biomedical Applications”, Polymers, 3, 1215−1242, 2011.
[2] M. R. Aguilar, C. Elvira, A. Gallardo, B. Vázquez, and J. S. Román, “Smart Polymers and Their Applications”, Topics in Tissue Engineering, Eds. N. Ashammakhi, R. Reis and E. Chiellini, 2007.
[3] H. G. Schild, M. Muthukumar, D. A. Tirrell, “Cononsolvency in Mixed Aqueous- Solutions of Poly(N-Isopropylacrylamide)”, Macromolecules, 24, 948−952, 1991.
[4] M. Heskinsa, J. E. Guillet, “Solution Properties of Poly(N-isopropylacrylamide)”, J. Macromol. Sci. Chem, A2, 1441−1455, 1968.
[5] K. Lava, B. Verbraeken, R. Hoogenboom, “Poly(2-oxazoline)s and click chemistry: A versatile toolbox toward multi-functional polymers”, Euro. Polymer J., 65, 98–111, 2015.
[6] H. Schlaad, C. Diehl, A. Gress, M. Meyer, A. L. Demirel, Y. Nur, A. Bertin, “Poly(2-oxazoline)s as Smart Bioinspired Polymers”, Macromol. Rapid Commun., 31, 511–525, 2010.
[7] R. Hoogenboom, “Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications”, Angew. Chem., Int. Ed., 48, 7978–7994, 2009.
[8] T. X. Viegas, M. D. Bentley, J. M. Harris, Z. Fang, K. Yoon, B. Dizman, R. Weimer, A. Mero, G. Pasut, F. M. Veronese, “Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery”, Bioconjugate Chem., 22, 976−986, 2011.
56
[9] A. L. Demirel, M. Meyer, H. Schlaad, “Formation of Polyamide Nanofibers by Directional Crystallization in Aqueous Solution”, Angew. Chem. Int. Ed., 46, 8622−8624, 2007.
[10] R. Obeid, F. Tanaka, F. M. Winnik, “Heat-Induced Phase Transition and Crystallization of Hydrophobically End-Capped Poly(2-isopropyl-2-oxazoline)s in Water” Macromolecules, 42, 5818−5828, 2009.
[11] N. Oleszko, A. U. Wesołek, W. Wałach, M. Libera, A. Hercog, U. Szeluga, M. Domański, B. Trzebicka, A. Dworak, “Crystallization of Poly(2-isopropyl-2- oxazoline) in Organic Solutions”, Macromolecules, 48, 1852−1859, 2015.
[12] Y. Katsumoto, A. Tsuchiizu, X. P. Qiu, F. M. Winnik, “Dissecting the Mechanism of the Heat-Induced Phase Separation and Crystallization of Poly(2- isopropyl-2-oxazoline) in Water through Vibrational Spectroscopy and Molecular Orbital Calculations”, Macromolecules, 45, 3531−3541, 2012.
[13] F. M. Winnik, H. Ringsdorf, J. Venzmer, “Methanol–water as a co-nonsolvent system for poly(N-isopropylacrylamide)”. Macromolecules, 23, 2415–2416, 1990.
[14] C. Scherzinger, A. Schwarz, A. Bardow, K. Leonhard, W. Richtering, “Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels”, Colloid Interface Sci., 19, 84−94, 2014.
[15] H. Mahdavi, M. Sadeghzadeh, N.T. Qazvini, “Phase behavior study of poly(N- tertbutylacrylamide-co-acrylamide) in the mixture of water–methanol: the role of polymer–nonsolvent second-order interactions”, J. Polym. Sci., 47, 455–62, 2009.
57
[16] K. Pagonis, G. Bokias. “Upper critical solution temperature-type cononsolvency of poly(N, N-dimethylacrylamide) in water–organic solvent mixtures”, Polymer, 45, 2149–2153, 2004.
[17] N. Orakdogen, O. Okay, “Reentrant conformation transition in poly(N, N- dimethylacrylamide) hydrogels in water–organic solvent mixtures”, Polymer, 47, 561–568, 2006.
[18] B. R. Saunders, H.M. Crowther, B. Vincent, “Poly[(methylmethacrylate) -co- (methacrylic acid)] microgel particles: swelling control using pH, cononsolvency, and osmotic deswelling”, Macromolecules, 30, 482–427, 1997.
[19] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a Single- Beam Gradient Force Optical Trap for Dielectric Particles”, Optics Letters, 11, 288−290, 1986.
[20] A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical Trapping and Manipulation of Single Cells Using Infrared-Laser Beams”, Nature, 330, 769−771, 1987.
[21] M. A. van Dijk, L. C. Kapitein, J. van Mameren, C. F. Schmidt, E. J. G. Peterman, “Combining Optical Trapping and Single-Molecule Fluorescence Spectroscopy: Enhanced Photobleaching of Fluorophores”, J. Phys. Chem. B, 108, 6479−6484, 2004.
[22] S. Chu, J. E. Bjorkholm, A. Ashkin, A. Cable, “Experimental-Observation of Optically Trapped Atoms”, Phys. Rev. Lett., 57, 314−317, 1986.
[23] J. N. A. Matthews, “Commercial optical traps emerge from biophysics labs”, Physics Today, 26, 2009.
[24] K. C. Neuman, S. M. Block, “Optical trapping”, Rev. Sci. Instrum., 75, 2787−2809, 2004.
58
[25] K. Sasaki, M.Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal article and a water droplet by a scanning laser beam”, Appl. Phys. Lett., Vol. 60, 7−17, 1991.
[26] J. C. Crocker, D. G. Grier, “When like charges attract: The effects of geometrical confinement on long-range colloidal interactions”, Phys. Rev. Lett., 77, 1897−1900, 1996.
[27] R. Barziv, E. Moses, “Instability and Pearling States Produced in Tubular Membranes by Competition of Curvature and Tension”, Phys. Rev. Lett., 73, 1392−1395. 1994.
[28] S.C. Chapin, V. Germain, E.R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers” Optics Express, 14(26), 13095−13100, 2006.
[29] P. Borowicz, J. Hotta, K. Sasaki, H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N- dimethylformamide by photon pressure of a focused near-infrared laser beam”, Journal of Physical Chemistry B, 102, 1896−1901, 1998.
[30] J. Hotta, K. Sasaki, H. Masuhara, “Laser-controlled assembling of repulsive unimolecular micelles in aqueous solution”, J. Phys. Chem. B, 102, 7687−7690, 1998.
[31] T.A. Smith, J. Hotta, K. Sasaki, H. Masuhara, Y. Itoh, “Photon pressure-induced association of nanometer-sized polymer chains in solution”, J. Phys. Chem. B, 103, 1660−1663, 1999.
[32] P. Borowicz, J. Hotta, K. Sasaki, H. Masuhara, “Laser-controlled association of
59
poly(N-vinylcarbazole) in organic solvents: Radiation pressure effect of a focused near-infrared laser beam”, J. Phys. Chem. B, 101, 5900−5904, 1997.
[33] T. Sugiyama, T. Adachi, H. Masuhara, “Crystallization of glycine by photon pressure of a focused CW laser beam”. Chem. Lett., 36, 1480−1481, 2007.
[34] T. Sugiyama, T. Adachi, H. Masuhara, “Crystal Growth of Glycine Controlled by a Focused CW Near-infrared Laser Beam” Chem. Lett., 38, 482−483, 2009.
[35] T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara, N. Tohnai, M Miyata, “Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam” J. Phys. Chem. Lett., 1, 599−603, 2010.
[36]T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara, “Crystallization in Unsaturated Glycine/D2O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser”, Cryst. Growth Des., 10, 4686−4688, 2010.
[37] K. Yuyama, T. Sugiyama, H. Masuhara, “Millimeter-Scale Dense Liquid Droplet Formation and Crystallization in Glycine Solution Induced by Photon Pressure”. J. Phys. Chem. Lett., 1, 1321−1325, 2010.
[38] M. Gugliotti, M.S. Baptista, M.J. Politi, “Laser-induced Marangoni convection in the presence of surfactant monolayers”, Langmuir, 18, 9792−9798, 2002.
[39] Z.S. Mao, J.Y. Chen, “Numerical simulation of the Marangoni effect on mass transfer to single slowly moving drops in the liquid-liquid system”, Chem. Eng. Sci., 59, 1815−1828, 2004.
[40] O. A. Louchev, S Juodkazis, N Murazawa, S Wada, H Misawa., “Coupled laser
60
molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection”. Optics Express, 16, 5673−5680, 2008.
[41] T. Uwada, T.Sugiyama., A. Miura, H. Masuhara, “Wide-field light scattering imaging of laser trapping dynamics of single gold nanoparticles in solution”, Proc. of SPIE, 7762, 77620N-77620N-8, 2010.
[42] T. M. Letcher, P. M. Siswana, “Liquid-liquid equilibria for mixtures of an alkanol + water + a methyl substituted benzene at 25°C”, Fluid Phase Equilibia, 74, 203−217, 1992.
[43] S. V. Kazakov, N. I. Chernova, “Properties of the liquid-liquid coexistence curves with several critical points”, Chem. Eng. Commun., 190, 213−235, 2003.
[44] T. Saitoh, T. Ohyama, K. Takamura, T. Sakurai, T. Kaise1, C. Matsubara,, “Extraction of Iron(II)-Tris(1,10-phenanthrolinato) into the Polymer Phase Formed from an Aqueous of Poly(N-isopropylacrylamide)”, Anal. Sci., 13, 1, 1−4, 1997.
[45] S. A. Mukai1, N. Magome1, H. Kitahata1, K. Yoshikawa1, “Liquid/liquid dynamic phase separation induced by a focused laser”, Appl. Phys. Lett., 83, 2557−2559, 2003.
[46] J. Hobley, S. Kajimoto, A. Takamizawa, K. Ohta, Q. Tran-Cong, H. Fukumura, “Dynamics of Liquid Structure Relaxation from Criticality after a Nanosecond Laser Initiated T-Jump in Triethylamine−Water”, J. Phys. Chem. B, 107, 11411−11418, 2003.
[47] S. Ito, T. Sugiyama, N. Toitani, G. Katayama, H. Miyasaka,, “Application of fluorescence correlation spectroscopy to the measurement of local temperature in
61
solutions under optical trapping condition”, J. Phys. Chem. B, 111, 2365−2371, 2007.
[48] C. H. Tseng, “Laser-induced phase transition dynamics of poly(N- isopropylacrylamine) in water studied by optical microscopy and time-resolved fluorescence microscopy”, NCTU, master thesis, 2010.
[49] P. Y. Lin, Dual laser-induced local phase transition of poly(N- isopropylacrylamine) solution. NCTU, master thesis, 2012.
[50] N. Kitamura, M. Yamada, S. Ishizaka, K. Konno, “Laser-Induced Liquid-to- Droplet Extraction of Chlorophenol: Photothermal Phase Separation of Aqueous Triethylamine Solutions”, Anal. Chem., 77, 6055−6061, 2005.
[51] G. Becker, C. Lee, Z. Lin, “Thermal conductivity in advanced chips — Emerging generation of thermal greases offers advantages”, Adv. Packaging, 2–4, 2008.
[52] H. D. Young, University Physics, 7th Ed, Addison Wesley, Table 15-5, 1992.
[53] C. Scherzinger, A. Schwarz, A. Bardow, K. Leonhard, W. Richtering, “Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels”, Current Opinion in Colloid &; Interface Science 19, 84–94, 2014.
[54] C. Scherzinger, A. Schwarz, A. Bardow, K. Leonhard, W. Richtering, “Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels”, Current Opinion in Colloid &; Interface Science 19, 84–94, 2014.
[55] R. Hoogenboom, H. M. Thijs, M. J. Jochems, B. M. van Lankvelt, M. W. Fijten, U. S. Schubert, “Tuning LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)?”, Chem.
62
Commun., 5744−5758. 2008.
[56] C. Diehl, P. Černoch, I. Zenke, H. Runge, R. Pitschke, J. Hartmann, B. Tierschc, H. Schlaad, “Mechanistic study of the phase separation/crystallization process of poly(2-isopropyl-2-oxazoline) in hot water”, Soft Matter, 6, 3784–3788, 2010.
[57] A. L. Demirel, M. Meyer, H. Schlaad, “Formation of Polyamide Nanofibers by Directional Crystallization in Aqueous Solution”, Angew. Chem. Int. Ed., 46, 8622–8624, 2007.
[58] G. Baffou, R. Quidant, “Thermo-plasmonics: using metallic nanostructures as
nano-sources of heat”, Laser Photonics Rev. 7, 171–187, 2013.
[59] M. Ishikawa, H. Misawa, N. Kitamura, H. Masuhara, “Poly(N- isopropylacrylamide) microparticle formation in water by infrared laser-induced photothermal phase-transition”, Chem. Lett., 481−484, 1993.
[60] J. Hoefkens, J. Hotta, K. Sasaki, H. Masuhara, K. Iwai, “Molecular Assembling by the Radiation Pressure of a Focused Laser Beam: Poly(N- isopropylacrylamide) in Aqueous Solution”, Langmuir, 13, 414−419, 1997.
[61] T. Saitoh, T. Ohyama, K. Takamura, T. Sakurai, T. Kaise, C. Matsubara, “Extraction of Iron(II)-Tris(1,10-phenanthrolinato) into the Polymer Phase Formed from an Aqueous of Poly(N-isopropylacrylamide)”, Anal. Sci., 13, 1, 1−4, 1997.
[62] I. L. Arbeloa, K. K. Rohatgi-Mukherjee, “Solvent effects on the photophysics of the molecular forms of rhodamine B. Internal conversion mechanism”, Chem. Phys. Lett.,129, 607−614, 1986
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top