|
[1] M. A. Ward, T. K. Georgiou, “Thermoresponsive Polymers for Biomedical Applications”, Polymers, 3, 1215−1242, 2011. [2] M. R. Aguilar, C. Elvira, A. Gallardo, B. Vázquez, and J. S. Román, “Smart Polymers and Their Applications”, Topics in Tissue Engineering, Eds. N. Ashammakhi, R. Reis and E. Chiellini, 2007. [3] H. G. Schild, M. Muthukumar, D. A. Tirrell, “Cononsolvency in Mixed Aqueous- Solutions of Poly(N-Isopropylacrylamide)”, Macromolecules, 24, 948−952, 1991. [4] M. Heskinsa, J. E. Guillet, “Solution Properties of Poly(N-isopropylacrylamide)”, J. Macromol. Sci. Chem, A2, 1441−1455, 1968. [5] K. Lava, B. Verbraeken, R. Hoogenboom, “Poly(2-oxazoline)s and click chemistry: A versatile toolbox toward multi-functional polymers”, Euro. Polymer J., 65, 98–111, 2015. [6] H. Schlaad, C. Diehl, A. Gress, M. Meyer, A. L. Demirel, Y. Nur, A. Bertin, “Poly(2-oxazoline)s as Smart Bioinspired Polymers”, Macromol. Rapid Commun., 31, 511–525, 2010. [7] R. Hoogenboom, “Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications”, Angew. Chem., Int. Ed., 48, 7978–7994, 2009. [8] T. X. Viegas, M. D. Bentley, J. M. Harris, Z. Fang, K. Yoon, B. Dizman, R. Weimer, A. Mero, G. Pasut, F. M. Veronese, “Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery”, Bioconjugate Chem., 22, 976−986, 2011. 56 [9] A. L. Demirel, M. Meyer, H. Schlaad, “Formation of Polyamide Nanofibers by Directional Crystallization in Aqueous Solution”, Angew. Chem. Int. Ed., 46, 8622−8624, 2007. [10] R. Obeid, F. Tanaka, F. M. Winnik, “Heat-Induced Phase Transition and Crystallization of Hydrophobically End-Capped Poly(2-isopropyl-2-oxazoline)s in Water” Macromolecules, 42, 5818−5828, 2009. [11] N. Oleszko, A. U. Wesołek, W. Wałach, M. Libera, A. Hercog, U. Szeluga, M. Domański, B. Trzebicka, A. Dworak, “Crystallization of Poly(2-isopropyl-2- oxazoline) in Organic Solutions”, Macromolecules, 48, 1852−1859, 2015. [12] Y. Katsumoto, A. Tsuchiizu, X. P. Qiu, F. M. Winnik, “Dissecting the Mechanism of the Heat-Induced Phase Separation and Crystallization of Poly(2- isopropyl-2-oxazoline) in Water through Vibrational Spectroscopy and Molecular Orbital Calculations”, Macromolecules, 45, 3531−3541, 2012. [13] F. M. Winnik, H. Ringsdorf, J. Venzmer, “Methanol–water as a co-nonsolvent system for poly(N-isopropylacrylamide)”. Macromolecules, 23, 2415–2416, 1990. [14] C. Scherzinger, A. Schwarz, A. Bardow, K. Leonhard, W. Richtering, “Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels”, Colloid Interface Sci., 19, 84−94, 2014. [15] H. Mahdavi, M. Sadeghzadeh, N.T. Qazvini, “Phase behavior study of poly(N- tertbutylacrylamide-co-acrylamide) in the mixture of water–methanol: the role of polymer–nonsolvent second-order interactions”, J. Polym. Sci., 47, 455–62, 2009. 57 [16] K. Pagonis, G. Bokias. “Upper critical solution temperature-type cononsolvency of poly(N, N-dimethylacrylamide) in water–organic solvent mixtures”, Polymer, 45, 2149–2153, 2004. [17] N. Orakdogen, O. Okay, “Reentrant conformation transition in poly(N, N- dimethylacrylamide) hydrogels in water–organic solvent mixtures”, Polymer, 47, 561–568, 2006. [18] B. R. Saunders, H.M. Crowther, B. Vincent, “Poly[(methylmethacrylate) -co- (methacrylic acid)] microgel particles: swelling control using pH, cononsolvency, and osmotic deswelling”, Macromolecules, 30, 482–427, 1997. [19] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a Single- Beam Gradient Force Optical Trap for Dielectric Particles”, Optics Letters, 11, 288−290, 1986. [20] A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical Trapping and Manipulation of Single Cells Using Infrared-Laser Beams”, Nature, 330, 769−771, 1987. [21] M. A. van Dijk, L. C. Kapitein, J. van Mameren, C. F. Schmidt, E. J. G. Peterman, “Combining Optical Trapping and Single-Molecule Fluorescence Spectroscopy: Enhanced Photobleaching of Fluorophores”, J. Phys. Chem. B, 108, 6479−6484, 2004. [22] S. Chu, J. E. Bjorkholm, A. Ashkin, A. Cable, “Experimental-Observation of Optically Trapped Atoms”, Phys. Rev. Lett., 57, 314−317, 1986. [23] J. N. A. Matthews, “Commercial optical traps emerge from biophysics labs”, Physics Today, 26, 2009. [24] K. C. Neuman, S. M. Block, “Optical trapping”, Rev. Sci. Instrum., 75, 2787−2809, 2004. 58 [25] K. Sasaki, M.Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal article and a water droplet by a scanning laser beam”, Appl. Phys. Lett., Vol. 60, 7−17, 1991. [26] J. C. Crocker, D. G. Grier, “When like charges attract: The effects of geometrical confinement on long-range colloidal interactions”, Phys. Rev. Lett., 77, 1897−1900, 1996. [27] R. Barziv, E. Moses, “Instability and Pearling States Produced in Tubular Membranes by Competition of Curvature and Tension”, Phys. Rev. Lett., 73, 1392−1395. 1994. [28] S.C. Chapin, V. Germain, E.R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers” Optics Express, 14(26), 13095−13100, 2006. [29] P. Borowicz, J. Hotta, K. Sasaki, H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N- dimethylformamide by photon pressure of a focused near-infrared laser beam”, Journal of Physical Chemistry B, 102, 1896−1901, 1998. [30] J. Hotta, K. Sasaki, H. Masuhara, “Laser-controlled assembling of repulsive unimolecular micelles in aqueous solution”, J. Phys. Chem. B, 102, 7687−7690, 1998. [31] T.A. Smith, J. Hotta, K. Sasaki, H. Masuhara, Y. Itoh, “Photon pressure-induced association of nanometer-sized polymer chains in solution”, J. Phys. Chem. B, 103, 1660−1663, 1999. [32] P. Borowicz, J. Hotta, K. Sasaki, H. Masuhara, “Laser-controlled association of 59 poly(N-vinylcarbazole) in organic solvents: Radiation pressure effect of a focused near-infrared laser beam”, J. Phys. Chem. B, 101, 5900−5904, 1997. [33] T. Sugiyama, T. Adachi, H. Masuhara, “Crystallization of glycine by photon pressure of a focused CW laser beam”. Chem. Lett., 36, 1480−1481, 2007. [34] T. Sugiyama, T. Adachi, H. Masuhara, “Crystal Growth of Glycine Controlled by a Focused CW Near-infrared Laser Beam” Chem. Lett., 38, 482−483, 2009. [35] T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara, N. Tohnai, M Miyata, “Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam” J. Phys. Chem. Lett., 1, 599−603, 2010. [36]T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara, “Crystallization in Unsaturated Glycine/D2O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser”, Cryst. Growth Des., 10, 4686−4688, 2010. [37] K. Yuyama, T. Sugiyama, H. Masuhara, “Millimeter-Scale Dense Liquid Droplet Formation and Crystallization in Glycine Solution Induced by Photon Pressure”. J. Phys. Chem. Lett., 1, 1321−1325, 2010. [38] M. Gugliotti, M.S. Baptista, M.J. Politi, “Laser-induced Marangoni convection in the presence of surfactant monolayers”, Langmuir, 18, 9792−9798, 2002. [39] Z.S. Mao, J.Y. Chen, “Numerical simulation of the Marangoni effect on mass transfer to single slowly moving drops in the liquid-liquid system”, Chem. Eng. Sci., 59, 1815−1828, 2004. [40] O. A. Louchev, S Juodkazis, N Murazawa, S Wada, H Misawa., “Coupled laser 60 molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection”. Optics Express, 16, 5673−5680, 2008. [41] T. Uwada, T.Sugiyama., A. Miura, H. Masuhara, “Wide-field light scattering imaging of laser trapping dynamics of single gold nanoparticles in solution”, Proc. of SPIE, 7762, 77620N-77620N-8, 2010. [42] T. M. Letcher, P. M. Siswana, “Liquid-liquid equilibria for mixtures of an alkanol + water + a methyl substituted benzene at 25°C”, Fluid Phase Equilibia, 74, 203−217, 1992. [43] S. V. Kazakov, N. I. Chernova, “Properties of the liquid-liquid coexistence curves with several critical points”, Chem. Eng. Commun., 190, 213−235, 2003. [44] T. Saitoh, T. Ohyama, K. Takamura, T. Sakurai, T. Kaise1, C. Matsubara,, “Extraction of Iron(II)-Tris(1,10-phenanthrolinato) into the Polymer Phase Formed from an Aqueous of Poly(N-isopropylacrylamide)”, Anal. Sci., 13, 1, 1−4, 1997. [45] S. A. Mukai1, N. Magome1, H. Kitahata1, K. Yoshikawa1, “Liquid/liquid dynamic phase separation induced by a focused laser”, Appl. Phys. Lett., 83, 2557−2559, 2003. [46] J. Hobley, S. Kajimoto, A. Takamizawa, K. Ohta, Q. Tran-Cong, H. Fukumura, “Dynamics of Liquid Structure Relaxation from Criticality after a Nanosecond Laser Initiated T-Jump in Triethylamine−Water”, J. Phys. Chem. B, 107, 11411−11418, 2003. [47] S. Ito, T. Sugiyama, N. Toitani, G. Katayama, H. Miyasaka,, “Application of fluorescence correlation spectroscopy to the measurement of local temperature in 61 solutions under optical trapping condition”, J. Phys. Chem. B, 111, 2365−2371, 2007. [48] C. H. Tseng, “Laser-induced phase transition dynamics of poly(N- isopropylacrylamine) in water studied by optical microscopy and time-resolved fluorescence microscopy”, NCTU, master thesis, 2010. [49] P. Y. Lin, Dual laser-induced local phase transition of poly(N- isopropylacrylamine) solution. NCTU, master thesis, 2012. [50] N. Kitamura, M. Yamada, S. Ishizaka, K. Konno, “Laser-Induced Liquid-to- Droplet Extraction of Chlorophenol: Photothermal Phase Separation of Aqueous Triethylamine Solutions”, Anal. Chem., 77, 6055−6061, 2005. [51] G. Becker, C. Lee, Z. Lin, “Thermal conductivity in advanced chips — Emerging generation of thermal greases offers advantages”, Adv. Packaging, 2–4, 2008. [52] H. D. Young, University Physics, 7th Ed, Addison Wesley, Table 15-5, 1992. [53] C. Scherzinger, A. Schwarz, A. Bardow, K. Leonhard, W. Richtering, “Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels”, Current Opinion in Colloid &; Interface Science 19, 84–94, 2014. [54] C. Scherzinger, A. Schwarz, A. Bardow, K. Leonhard, W. Richtering, “Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels”, Current Opinion in Colloid &; Interface Science 19, 84–94, 2014. [55] R. Hoogenboom, H. M. Thijs, M. J. Jochems, B. M. van Lankvelt, M. W. Fijten, U. S. Schubert, “Tuning LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)?”, Chem. 62 Commun., 5744−5758. 2008. [56] C. Diehl, P. Černoch, I. Zenke, H. Runge, R. Pitschke, J. Hartmann, B. Tierschc, H. Schlaad, “Mechanistic study of the phase separation/crystallization process of poly(2-isopropyl-2-oxazoline) in hot water”, Soft Matter, 6, 3784–3788, 2010. [57] A. L. Demirel, M. Meyer, H. Schlaad, “Formation of Polyamide Nanofibers by Directional Crystallization in Aqueous Solution”, Angew. Chem. Int. Ed., 46, 8622–8624, 2007. [58] G. Baffou, R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat”, Laser Photonics Rev. 7, 171–187, 2013. [59] M. Ishikawa, H. Misawa, N. Kitamura, H. Masuhara, “Poly(N- isopropylacrylamide) microparticle formation in water by infrared laser-induced photothermal phase-transition”, Chem. Lett., 481−484, 1993. [60] J. Hoefkens, J. Hotta, K. Sasaki, H. Masuhara, K. Iwai, “Molecular Assembling by the Radiation Pressure of a Focused Laser Beam: Poly(N- isopropylacrylamide) in Aqueous Solution”, Langmuir, 13, 414−419, 1997. [61] T. Saitoh, T. Ohyama, K. Takamura, T. Sakurai, T. Kaise, C. Matsubara, “Extraction of Iron(II)-Tris(1,10-phenanthrolinato) into the Polymer Phase Formed from an Aqueous of Poly(N-isopropylacrylamide)”, Anal. Sci., 13, 1, 1−4, 1997. [62] I. L. Arbeloa, K. K. Rohatgi-Mukherjee, “Solvent effects on the photophysics of the molecular forms of rhodamine B. Internal conversion mechanism”, Chem. Phys. Lett.,129, 607−614, 1986
|