跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/03 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐釗暉
研究生(外文):Chao-Hui Shu
論文名稱:鈮酸鋰薄膜之層狀結構表面聲波波傳特性分析
論文名稱(外文):An analysis on the property of surface acoustic wave propagation in the LiNbO3 thin film with Layered structures
指導教授:施文欽
指導教授(外文):Wen-Ching Shih
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:50
中文關鍵詞:鈮酸鋰氧化鋅氮化鋁
外文關鍵詞:AlNLiNbO3ZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的是探討在LiNbO3/Buffer/Si架構下,藉由緩衝層的相速度及機電耦合係數的變化關係來模擬及了解三層結構的特性變化。
因鈮酸鋰材料具有多種切角及多組使用模態的變化,在多種模態的聲速及機電耦合係數也具有多變化性的組合,所以成為目前為最常使用的壓電材料之一,本論文將針對以鈮酸鋰為主要的薄膜材料;緩衝層為非壓電材料或是壓電材料的架構下,探討四種有助於鈮酸鋰薄膜成長的材料,來當作其緩衝層,如ZnO、AlN等壓電性材料或SiO2、Al2O3等非壓電性材料,進行在各種電極架構下的相速度及機電耦合係數之模擬分析比較,希望能找到適合作為鈮酸鋰薄膜成長有利依據,並配合實際薄膜製程難易的考量選用較適當的電極架構,已期獲得較高的相速度於高頻元件的應用,或是利用較高的機電耦合係數,作為低損耗及寬頻的應用;在基板的選擇為使用Si當作基板,希望能整合於成熟的矽基半導體製程來達成薄膜化的目標。
In this thesis , we will discuss the variation by of the characteristics simulating the LiNbO3/Buffer/Si structures to gain the phase velocity and electromechanical coupling coefficient.

LiNbO3 was used popularly in a lot kinds of cut and modulus, because there are many different phase velocity and electromechanical coupling coefficient combinations in different cut and modulus. So in this thesis , we will focus on the LiNbO3 thin film. By the references [4-55], we will select four different kinds of buffer layer materials which is AlN、ZnO for the piezoelectric materials and Al2O3、SiO2 for the non-piezoelectric materials to get the better characteristics for the growing high-quality LiNbO3 thin films. We will use the silicon substrate for the integration of SAW with the maturing Si-based semiconductor devices.
TABLE OF CONTENTS

CHINESE ABSTRACT……….……………….…………………………i
ENGLISH ABSTRACT…….……………...............…………………….ii
ACKNOWLEDGEMENTS…..………..………………..………………iii
TABLE OF CONTENTS….……………......…….…………..………….iv
LIST OF FIGURES………………….......………………..……………. vii
CHAPTER
1 Introduction.………………………..............………….…..1
1.1 Motivation………………………..…………….……...1
1.2 Thesis Outline….....…………….………..…………….2
2 Theory of SAW Propagation in a Three-Layer Structure…………………………………………………….3
2.1 General Principles. ……………….………………..…3
2.2 The Boundary Condition..………………………..…...7
2.3 Concepts of Phase Velocity and Coupling Coefficient
………………………………………………………...11
3 Results and Discussion.…..……....……………………….13
3.1 Motivation……………………………..……………....13

3.2 Theoretical Investigation on the SAW Propagation on LiNbO3 / SiO2 / Si Layered Structure…………...……13
3.2.1 Phase Velocity…………………………………..13
3.2.2 Electro-mechanical Coupling Coefficient……....14
3.3 Theoretical Investigation on the SAW Propagation on LiNbO3 / Al2O3 / Si Layered Structure..……………...15
3.3.1 Phase Velocity…………………………………..15
3.3.2 Electro-mechanical Coupling Coefficient……....15
3.4 Theoretical Investigation on the SAW Propagation on LiNbO3 / AlN / Si Layered Structure..………………..16
3.4.1 Phase Velocity…………………………………..16
3.4.2 Electro-mechanical Coupling Coefficient……....17
3.5 Theoretical Investigation on the SAW Propagation on LiNbO3 / ZnO / Si Layered Structure….……………..17
3.4.1 Phase Velocity………………………...………...17
3.4.2 Electro-mechanical Coupling Coefficient………18
3.6 Theoretical Investigation on the SAW Propagation on Different Buffer Layers……………………...………19
3.6.1 Motion…………………… ……………………19
3.6.2 Phase Velocity…………………………………19
3.6.3 Electro-mechanical Coupling Coefficient…..…19
4 Conclusions…..…............................…………………………….20
REFERENCES…........…………………….…………………...…………..21
References
[1] C. K. Campbell,“Surface Acoustic Wave Devices for Mobile and Wireless Communications”, pp. 3-11.
[2] Toronto,“Surface-Launched Acoustic Wave Sensors”, pp. 1-13
[3] Wen Liu, “General Green,s Functions for SAW Device Analysis”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 46, No. 5, September, pp. 1242-1253, 1999.
[4] Kao. KS,“ The characteristics of surface acoustic waves on AlN/ LiNbO3 substrates”, Applied Physics A-Materials Science & Processing 76 (7): 1125-1127 MAY 2003.
[5] Wu S, “Characterization of AlN films on Y-128 degrees LiNbO3 by surface acoustic wave measurement”, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 41 (7A): 4605-4608 JUL 2002.
[6] Ishihara M, “Preparation of AlN and LiNbO3 thin films on diamond substrates by sputtering method”, Diamond and Related Materials 11 (3-6): 408-412 Sp. Iss. SI, MAR-JUN 2002.
[7] Kao. KS, “Synthesis and surface acoustic wave properties of AlN films deposited on LiNbO3 substrates”, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 49 (3): 345-349 MAR 2002.
[8] Wu S, Wu L, “Temperature compensation with A1N film on Y-128 degrees LiNbO3”, Japanese Journal of Applied Physics Part 2-Letters 40 (5A): L471-L473 MAY 1 2001.
[9] Wu L, “Influence of sputtering pressure on physical structure of AIN thin films prepared on Y-128 degrees LiNbO3 by rf magnetron sputtering”, Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films 19 (1): 167-170 JAN-FEB 2001.
[10] C. C. Cheng, K. S. Kao and Y. C. Chen, “Highly c-axis oriented AlN films deposited on LiNbO3 substrates for surface acoustic wave devices”, Proc. IEEE, pp. 439-442, 2001.
[11] Wu L, “Sputtering highly c-axis-oriented AlN films on Y-128 degrees LiNbO3”, Japanese Journal of Applied Physics Part 2-Letters 39 (6A): L545-L547 JUN 1 2000.
[12] C. C. Cheng, Y. C. Chen and K. S. Kao, “Highly c-axis oriented AlN films deposited on LiNbO3 substrates for surface acoustic wave device”, Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, Vol. 1, pp. 439-442, 2000.
[13] K. S. Kao, C. C. Cheng and Y. C. Chen, “Synthesis and surface acoustic wave properties of AlN films deposited on LiNbO3 substrates”, IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control. Vol. 49, 2002.
[14] K. Tsubouchi, K. Sugat, N. Mikoshiba, “AlN material constants evaluation and SAW properties on AlN/Al2O3 and AlN/Si”, IEEE Ultrasonics Symposium, pp. 375-380,1981.
[15] S. Tomabechi, S. Kameda, K. Masu, K. Tsubouchi,“2.4 GHz front-end multi- track AlN/α-Al2O3 SAW matched filter”, IEEE Ultrasonics Symposium, pp. 73 -76, 1998.
[16] 陳健興,“氮化鋁薄膜在鈮酸鋰基板上之表面聲波特性”, 國立中山大學電機工程學系研究所碩士論文 (2000) 。
[17] 高國陞,“鈮酸鋰基板上沈積氮化鋁薄膜及其表面聲波元件之應用”,國立中山大學電機工程研究所碩士論文 (1999)。
[18] 林升強,“鈮酸鋰基板與射頻濺鍍氮化鋁薄膜之表面聲波研究”,國立中山大學電機工程研究所碩士論文 (1998)。
[19] Gupta V, “Growth and characterization of c-axis oriented LiNbO3 film on a transparent conducting Al : ZnO inter-layer on Si”, Journal of Materials Research 19 (8): 2235-2239 AUG 2004.
[20] Lee GH ,“Optical properties of ZnO thin films on LiNbO3 and LiTaO3 substrates grown by pulsed laser deposition”, Solid State Communications 128 (9-10): 351-354 DEC 2003.
[21] Kim KH, “The effect of ZnO additions on the characteristics of LiNbO3 single crystals”, Materials Letters 55 (1-2): 116-120 JUL 2002.
[22] Zhang Y, “Growth and properties of Zn doped lithium niobate crystal”, Journal of Crystal Growth 233 (3): 537-540 DEC 2001.
[23] Sharma P, “Imaging of piezoelectric activity in laser-ablated c-axis-oriented LiNbO3/ZnO thin film multilayer on glass using atomic force microscopy”, Journal of Materials Research 18 (9): 2025-2028 SEP 2003
[24] Li MH, “Second harmonic generation in Zn-doped Li-rich LiNbO3 crystals”, Crystal Research and Technology 36 (2): 191-195 2001.
[25] Yamamoto H, “ZnO thin films deposited on various LiNbO3 substrates by RF-sputtering”, Applied Surface Science 169: 517-520 JAN 15 2001.
[26] Yin J, “The epitaxial growth of wurtzite ZnO films on LiNbO3 (0001) substrates”, Journal of Crystal Growth 220 (3): 281-285 DEC 2000.
[27] J. B. Lee, S. H. Kwak and H. J. Kim, “Effects of surface roughness of substrates on the c-axis preferred orientation of ZnO films deposited by RF magnetron sputtering”, Thin Solid Films, vol. 423, pp. 262-266, 2003.
[28] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, ”Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering”, Vacuum, vol. 59, pp. 538-545, 2000.
[29] K. Nakamura and H. Kitazume and Y. Kawamura, “Optical TE-TM mode conversion using SH-SAW in ZnO/Y-X LiNbO3”, IEEE Ultrasonics Symposium, pp. 637-641, 1999.
[30] 王怡超, “The Fabrication of LiNbO3 Thin Films on Buffer Layer/ Si by RF Magnetron Sputtering and Its Application” 大同大學光電工程研究碩士論文 (2001)。
[31] 卓旭棋, “Acoustic Wave Propagation Characteristics”, 義守大學 電機工程學系碩士論文 (2002)。
[32] He JH,“Highly C-axis oriented LiNbO3 thin film on amorphous SiO2 buffer layer and its growth mechanism”, Chinese Science Bulletin 48 (21): 2290-2294 NOV 2003.
[33] Tomar M, “Temperature coefficient of elastic constants of SiO2 over-layer on LiNbO3 for a temperature stable SAW device”, Journal of Physics D-Applied Physics 36 (15): 1773-1777 AUG 7 2003.
[34] Yang X, “Strong ultraviolet emission from SiO2/ LiNbO3-(: Fe)/SiO2 structures”, Applied Physics Letters 82 (25): 4456-4458 JUN 23 2003.
[35] Wu XL, “Light emissions from LiNbO3/SiO2/Si structures”, Journal of Physics-Condensed Matter 15 (2): L25-L30 JAN 22 2003.
[36] Wang XC,“Effects of oxygen pressure on the c-axis oriented growth of LiNbO3 thin film on SiO2/Si substrate by pulsed laser deposition”, Journal of Materials Science Letters 22 (3): 225-227 FEB 1 2003.
[37] Ye ZZ, “Highly c-axis oriented LiNbO3 thin film grown on SiO2/Si substrates by pulsed laser deposition”, Materials Letters 55 (4): 265-268 AUG 2002.
[38] Yamanouchi K, “High temperature stable acoustic surface wave substrates of SiO2/ LiNbO3 structure with super high coupling”, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 41 (5B): 3480-3482 MAY 2002.
[39] Ono S, “Processing of highly oriented lithium niobate films through chemical solution deposition”, Journal of Materials Research 16 (4): 1155-1162 APR 2001.
[40] Cheng SD, “Sol-gel derived thin films of LiTaO3 on SiO2/Si substrates for optical waveguide applications”, Fiber and Integrated Optics 20 (1): 45-52 2001.
[41] Hu Y, “Crystallization kinetics of the LiNbO3-SiO2-Al2O3 glass”, Journal of Non-Crystalline Solids 278 (1-3): 170-177 DEC 2000.
[42] Pernas PL, “Zn-vapor diffused Er : Yb : LiNbO3 channel waveguides fabricated by means of SiO2 electron cyclotron resonance plasma deposition”, Applied Surface Science 161 (1-2): 123-130 JUL 2000.
[43] 鍾崇仁, “The Study of Temperature Compensation with SiO2 Films on Proton-Exchanged LiNbO3 and LiTaO3 for Surface Acoustic Wave”, 國立中山大學電機工程學系研究所碩士論文 (2002)。
[44] Lam HK, “Orientation controllable deposition of LiNbO3 films on sapphire and diamond substrates for surface acoustic wave device application”, Journal of Crystal Growth 268 (1-2): 144-148 JUL 15 2004.
[45] Lam HK, “Highly c-oriented LiNbO3 films on polycrystalline diamond substrate for high frequency surface acoustic wave devices”, Japanese Journal of Applied Physics Part 2-Letters & Express Letters 43 (6A): L706-L708 JUN 1 2004.
[46] Lee GH, “Selective nucleation and band-gap widening of LiNbO3 nanocrystals on an alpha-Al2O3 substrate”, Journal of the American Ceramic Society 87 (6): 1053-1055 JUN 2004.
[47] Boulle A, “Defect structure of pulsed laser deposited LiNbO3/Al2O3 layers determined by X-ray diffraction reciprocal space mapping”, Thin Solid Films 429 (1-2): 55-62 APR 1 2003.
[48] Bornand V, “Multi-step growth of oriented LiNbO3 thin films”, Integrated Ferroelectrics 45: 69-78 2002.
[49] Bornand V, “Oriented growth of LiNbO3 thin films for SAW properties”, Textures of Materials, Pts 1 and 2 Materials Science Forum 408-4: 1573-1578 2002.
[50] Nair JP, “Stoichiometry control during deposition by ion beam sputtering”, Journal of Applied Physics 92 (8): 4784-4790 OCT 15 2002.
[51] Bornand V, “An alternative route for the synthesis of oriented LiNbO3 thin films”, Integrated Ferroelectrics 43: 51-64 2002.
[52] Golubovic A, “The growth of sapphire single crystals”, Journal of the Serbian Chemical Society 66 (6): 411-418 2001.
[53] Lee GH, “Initial growth behaviour of LiNbO3 films on alpha-Al2O3 substrates with atomic scale step structure”, Solid State Communications 118 (9): 441-444 2001.
[54] Kakehi Y, “Epitaxial growth of LiNbO3 thin films using pulsed laser deposition”, Applied Surface Science 169: 560-563 JAN 15 2001.
[55] Bornand V, “ LiNbO3 and LiTaO3 thin films deposited by chemical and/or physical processes”, Annales De Chimie-Science Des Materiaux 26 (1): 49-54 JAN-FEB 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top