跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王元昌
研究生(外文):Wang, Yuan-Chang
論文名稱:斜角光纖光柵生化感測器之研究
論文名稱(外文):Study of the Tilted Fiber Bragg Grating Biochemical Sensor
指導教授:劉文豐劉文豐引用關係陳子江陳子江引用關係
指導教授(外文):Liu, Wen-FungChen, Tzu-Chiang
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:108
中文關鍵詞:生化光纖感測器斜角光纖光柵
外文關鍵詞:Biochemical Fiber SensorsTilted Fiber Bragg Gratings
相關次數:
  • 被引用被引用:2
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:1
本文主要是研究使用單模斜角光纖光柵所製作的生化感測器。透過斜角光纖光柵傾角變化對感測特性的理論模擬和實驗量測得知,纖殼模態與模態強度與傾角有關,而且高階纖殼模態具有較佳的感測特性。本文首先針對有機醇類溶液的光譜特性作探討,實驗中可有效辨識碳鏈數不同的醇類及濃度。甚至是碳氫數相同的醇類同分異構物,亦有不錯的辨別效果;此外以異丙醇為例,我們得知纖殼模態相對於主模態的波長偏移變化量有顯著的差異。應用在生化過程監測方面,可有效監測硝化菌其分解氨水的硝化歷程,由每日量測點可觀察出pH值下降及菌落數增加情形,約在第七日天後樣本水質趨向穩定,而這樣的結果可應用在環保或水產養殖的水質監控。另外,結合高分子感測膜及結構蝕刻,在表層披覆聚苯胺之斜角光纖光柵特性也在文中被探討,它可有效偵測氯化氫、氨氣等有害氣體。
由各項實驗結果,我們證實了所研製的斜角光纖光柵可利用高階模態增加感測精確度且有效應用於生化方面的監測,在未來可實際推廣應用在空氣污染的監控與防治上,亦可運用於河川、水庫、水產養殖等環境的進行水質改善的監測,為環保監測工作上提供一個單一系統可多點監測的建議方案。
The purpose of this study is to implement a biochemical sensor based on a tilted fiber Bragg grating (TFBG). For the slanted gratings, the number of cladding modes and the intensity of the loss peaks of cladding modes are dependant on the tilted angle. This phenomenon can be confirmed by the theoretical calculations and experimental results. However the sensing sensitivity of the higher modes comparing with that of the core mode or lower order modes should be better for monitoring the biochemical media. The detection performance of cladding modes of this fiber sensor will be improved.
In this thesis, the spectrum of organic compounds, such as the alcohol, is firstly to be investigated and then by means of experimental measurement, the difference between the carbon bonds and concentration variation can be distinguished. Moreover, TFBG sensor may provide a better performance to recognize an alcohol metamer from other types with the same number of carbon and hydrogen bonds but chemical structure. For sensing the isopropanol, the wavelength shift of the 9th cladding mode is greatly more than that of the fundamental core mode. For measuring biochemical experiments, we could monitor the nitrobacteria decompose and nitrify amino compounds in water. By the daily measurement, we would also observe the pH value of samples to be decreased and the number of bacteria to be increased. The quality of water tends to steady after about the 7th day. Therefore, we could apply this sensor to monitor the quality of water in environmental protection or aquatic farm. Finally, a fiber sensor based on the polyaniline coating technique on the surface of an etched TFBG as a sensing film is developed for detecting volatile toxic vapors. It can effectively be used to detect harmful vapors, such as hydrochloride (HCl) and ammonia (NH3). Besides, it can be extended to the applications of monitoring air pollution and the water quality.
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 研究背景 1
1.2 研究動機及目的 1
1.3 研究流程與章節介紹 3
2. 理論簡介 5
2.1 光纖光柵簡介 5
2.1.1 光纖內光波傳導模態特性 6
2.1.2 光纖的光敏性 12
2.1.3 光纖光柵的製作與種類 14
2.1.4 光纖光柵的用途 18
2.1.5 光纖光柵感測器種類與優缺點 19
2.2 光纖光柵模態理論 22
2.2.1 耦合模態理論 23
2.2.2 布拉格光纖光柵 32
2.3 斜角布拉格光纖光柵感測器 35
2.3.1 斜角布拉格光纖光柵理論 35
2.3.2 纖殼模態耦合 38
2.4 TFBG薄膜感測器感測理論分析 41
3. TFBG感測器理論模擬 45
3.1 蝕刻光纖光柵對感測效能之影響 45
3.1.1 FBG不同蝕刻厚度之影響 47
3.1.2 不同傾角TFBG蝕刻後光譜特性 49
3.1.3 同一蝕刻厚度對不同傾角TFBG光譜特性 51
3.1.4 光纖蝕刻不同厚度對SRI靈敏度分析 51
3.2 感測膜膜厚對感測之影響 52
3.2.1 感測膜膜厚光譜差異 53
3.2.2 對SRI 靈敏度分析 54
3.2.3 感測膜折射率改變之光譜現象 55
3.2.4 對待測氣體折射率改變之影響 59
3.3 以TFBG模擬感測膜量測有機化合物氣體(VOCs) 59
4. 感測器製作與測量架構設計 63
4.1 實驗流程 63
4.2 斜角光纖光柵寫製與架構 63
4.3 光纖蝕刻架構 65
4.4 感測膜鍍製 66
4.5 感測器測量架構 68
4.5.1 斜角光纖光柵封裝 68
4.5.2 液態生化樣本感測架構 69
4.5.3 氣體生化樣本感測架構 70
5. 實驗結果與討論 73
5.1 TFBG感測器研製特性 73
5.1.1 不同寫製角度對模態分佈影響 73
5.1.2 以不同光敏性光纖寫製TFBG的光譜特性 73
5.1.3 蝕刻後對斜角光纖光柵光譜特性 76
5.1.4 比較各模態損失峰比率,選擇感測用模態 79
5.2 TFBG感測器對不同醇類溶液濃度之模態特性比較 80
5.3 以TFBG監測硝化菌對氨水硝化過程 84
5.3.1 實驗概述 84
5.3.2 硝化菌簡介 86
5.3.3 實驗方法 88
5.3.4 分析與討論 89
5.4 高分子感測膜TFBG運用於氯化氫及氨氣氣體感測 95
5.4.1 前言 95
5.4.2 實驗方法 95
5.4.3 分析與討論 97
6. 結論 101
參考文獻 103
自傳 108
[1]Lee, B. G., “Review of the Present Status of Optical Fiber Sensors,” Optical Fiber Technology, Vol. 9, pp. 57-79, 2003.
[2]Kersey, A. D., “A Review of Recent Developments in Fiber Optic Sensor Technology,” Optical Fiber Technology, Vol. 2, pp. 291-317, 1996.
[3]Giallorenzi, T. G., Bucaro, J. A., Dandrige, A., Sigel, G. H., Cole J. H., and Rashleigh, S. C., “Optical Fiber Sensor Technology,” Journal of Quantum Electronics, Vol. QE-18-4, No. 4, pp. 626-665, April, 1982.
[4]Narayanaswamy, R., “Current Developments in Optical Biochemical Sensors,” Biosensors & Bioelectronics, Vol. 6, pp. 467-475, 1991.
[5]El-Sherif, M. A., Yuan, J., and MacDiarmid, A. G., “Fiber Optic Sensors and Smart Fabrics,” Journal of Intellegent Material Systems and Structures, Vol. 11, No. 5, pp. 407-414, May 2000.
[6]Erdogan, T. and Sipe, J. E., “Radiation-Mode Coupling Loss in Tilted Fiber Phase Gratings,” Optics Letters, Vol. 20, No. 18, pp. 1838-1840, September 15, 1995.
[7]Erdogan, T., “Fiber Grating Spectra,” Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1277-1294, 1997.
[8]Bhatia, V. and Vengsarkar, A. M., “Optical Fiber Long-Period Grating Sensors,” Optics Letters, Vol. 9, No. 21, pp. 692-694, 1996.
[9]Anderson, G. P., Golden, J. P., and Ligler, F. S., “An Evanescent Wave Biosensor Part I: Fluorescent Signal Acquisition from Step-Etched Fiber Optic Probes,” IEEE Transaction on Biomedical Engineering, Vol. 41, No. 6, pp. 51-62, June, 1994.
[10]Ladicicco, A., Cusano, A., Persiano, G.V., Cutolo, A., Bernini, R., and Giordano, M., “Refractive Index Measurements by Fiber Bragg Grating Sensor,” Proceedings of IEEE Sensors, Vol. 1, pp. 101-105, Oct., 2003.
[11]Chryssis, A. N., Lee, S. M., Lee, S. B., Saini, Simarjeet S., and Dagenais, M., “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor,” IEEE Photonics Technology Letters, Vol. 17, No. 6, pp. 1253-1255, June, 2005.
[12]Iadicicco, A., Cusano, A., Campopiano, S., Cutolo, A., and Giordano, M., “Thinned Fiber Bragg Gratings as Refractive Index Sensors,” IEEE Sensors Journal, Vol. 5, No. 6, pp. 1288-1295, December, 2005.
[13]Zhou, K., Chen, X., Zhang, L., and Bennion, I., “High-Sensitivity Optical Chemsensor Based on Etched D-Fiber Bragg Gratings,” Electronics Letters, Vol. 40, pp. 232-234, 2004.
[14]Baria´in, C., Matı´as, I.R., Ferna´ndez-Valdivielso, C., Arregui, F. J., Rodrı´guez-Me´ndez, M. L., and Saja, J. A, “Optical Fiber Sensor Based on Lutetium Bisphthalocyanine for the Detection of Gases Using Standard Telecommunication Wavelengths,” Sensors and Actuators B, Vol. 93 pp. 153-158, 2003.
[15]Yuan, J. M. and El-Sherif, M. A., “Fiber-Optic Chemical Sensor Using Polyaniline as Modified Cladding Material,” IEEE Sensors Journal, Vol. 3, No. 1, 2003.
[16]Chen, X. F., Zhou, K. M., Zhang, L., and Bennion, I., “Optical Chemsensor Based on Etched Tilted Bragg Grating Structures in Multimode Fiber,” IEEE Photonics Technology Letters, Vol. 17, Issue 4, pp. 864-866, 2005.
[17]Kasap, S. O., Optoelectronics and Photonics, Prentice Hall, Chapter 2, pp. 55-67, 2001.
[18]Hill, K. O., Fujii, Y., Johnson, D. D., and Kawasaki, B. S., “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Applied Physical Letters, Vol. 32, pp. 647-649, 1978.
[19]Hill, K. O. and Gerald, M., “Fiber Bragg Grating Technology Fundamentals and Overview,” Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1263-1276, August, 1997.
[20]Yariv, A., “Coupled-Mode Theory for Guided-Wave Optics,” IEEE Journal of Quantum Electronics, Vol. QE-9, No. 9, pp. 919-933, 1973.
[21]Streifer, W.; Scrifres, D. R.; and Burnham, R. D., “ Perturbation Analysis of Nonuniform Almost-Periodic Bragg Reflectors,” Journal of the Optical Society of America, Vol. 66, No. 12, pp. 1359-1363, December, 1976.
[22]Winick, K. A., “Effective-Index Method and Coupled-Mode Theory for Almost Periodic Waveguide Gratings: A Comparison,” Applied Optics, Vol. 31, pp. 757-764, 1992.
[23]Makoto, Y. and Kyohei, S., “Analysis of Almost Periodic Distributed Feedback Slab Waveguide Via a Fundamental Matrix Approach,” Applied Optics, Vol. 26, No. 16, pp. 3474-3478, August, 1987.
[24]Radic, S., George, N., and Agrawal, Govind P., “Analysis of Nonuniform Nonlinear Distributed Feedback Structures: Generalized Transfer Matrix Method,” IEEE Journal of Quantan Electronics, Vol. 31, No. 7, pp. 1326-1336, July, 1995.
[25]Yariv, A. and Yeh, P., Optical Waves in Crystals, John Wisley & Sons, New York, Ch. 6, pp. 177-189, 2003.
[26]Erdogan, T. and Sipe, J. E., “Tilted Fiber Phase Gratings,” Journal of Optical Society of America A, Vol. 13, No. 2, pp. 296-313, 1996.
[27]Erdogan, T., “Cladding-Mode Resonances in Short and Long Period Fiber Grating Filters,” Journal of Optical Society of America A, Vol. 14, No. 8, pp. 1760-1773, 1997.
[28]Heeger, A. J., “Semicinducting and Metallic Polymers: the Fourth Generation of Polymeric Materials,” Journal of Physical Chemistry B, Vol. 105, No. 36, pp. 8475-8491, 2001.
[29]MacDiarmid, A. G., “Synthetic Metals: A Novel Role for Organic Polymers,” Reviews of Modern Physics, Vol. 73, No. 3, pp. 701-712, 2001.
[30]Guadarrama, A. and Rodriguez, M. L., “Array of Sensors Based on Conducting Polymers for the Quality Control of the Aroma of the Virgin Olive Oil,” Sensors and Actuators B, Vol. 69, pp. 276-282, 2000.
[31]Dominique, N. D. and Fabienne, P. E., “Polyaniline as a New Sensitive Layer for Gas Sensors,” Analytica Chimica Acta, Vol. 475, pp. 1-15, October, 2002.
[32]Nicho, M. E. and Trejo, M., “Polyaniline Composite Coatings Interrogated by a Nulling Optical-Transmittance Bridge for Sensing Low Concentrations of Ammonia Gas,” Sensors and Actuators B, Vol. 76, pp. 18-24, August, 2001.
[33]Jin, Z., Su, Y., and Duan, Y., “Development of a Polyaniline-Based Optical Ammonia Sensor,” Sensors and Actuators B, Vol. 72, pp. 75-79, August, 2001.
[34]林瑤冷,“表面電漿共振在氣體與奈米微粒感測之研究”,博士論文,國防大學國防科學研究所,桃園,第59-93頁,2005。
[35]王建鈞,“表面電漿共振氣體感測器之研究”,碩士論文,國防大學國防科學研究所,桃園,第46-54頁,2004。
[36]Lide, D. R., Handbook of Chemistry and Physics, CRC, Chapter 6, pp. 174-175, 2003-2004.
[37]Liao, C. and Gu, M., “Electroless Deposition of Polyaniline Film Via Autocatalytic Polymerization of Aniline,” Thin Solid Films, Vol. 408, pp. 37-42, January, 2002.
[38]Cruz, G. J. and Morales, J., “Synthesis of Polyaniline Films by Plasma Polymerization,” Synthetic Metals, Vol. 88, pp. 213-218, 1997.
[39]Swapna, P., Subrahmanya, S., and Sathyanarayana, D. N., “Inverse Emulsion Polymerization: A New Route for the Synthesis of Conducting Polyaniline,” Synthetic Metals, Vol. 128, pp. 311-316, January, 2002.
[40]Malinauskas, A., “Chemical Deposition of Donducting Polymers,” Polymer, Vol. 42, pp. 3957-3972, January, 2000.
[41]Lide, D. R., Handbook of Chemistry and Physics, CRC, Chapter 8, p. 69, 2003-2004.
[42]http://commtechlab.msu.edu/sites/dlc-me/zoo/zdrs0232.html。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 54. 施明德,《施明德的政治遺囑:美麗島事件軍法大審答辯全文》,台北:前衛,1988年。
2. 43. 沈劍虹,《使美八年紀要:沈劍虹回憶錄》,台北:聯經,1986年。
3. 88. 陳振盛,《李登輝的小故事》,台北:台視文化,1988年。
4. 105. 黃煌雄,《台灣的先知先覺:蔣渭水先生》,台北:輝煌,1976年。
5. 46. 陳隆志,〈海外台灣人推動台灣加入聯合國回顧(1950-1991)〉,吳三連台灣史料基金會/主辦,「自覺與認同:1950~1990海外台灣人運動研討會」(2003年12月9~11日)。
6. 7. 王明珂,《華夏邊緣:歷史記憶與族群認同》,台北:允晨,2001年。
7. 12. 王詩琅,《日本殖民體制下的台灣》,台北:眾文,1980年。
8. 38. 矢內原忠雄/著,周憲文/譯,《日本帝國主義下之台灣》,台北:帕米爾,1987年。
9. 55. 李喬,《台灣人的醜陋面》,台北:前衛,1988年。
10. 78. 吳密察,〈台灣史的成立及其課題〉,《當代》期100,1994年8月。
11. 82. 吳明勇,〈戰後台灣史學的政治處境〉,《史耘》5期,1999年9月。
12. 85. 杜維運、黃俊傑/編,《史學方法論文集》,台北:華世,1979年。
13. 89. 何浩若,《美國姑息份子與台灣獨立運動》,台北:作者自印,1968年。
14. 104. 林志雄,《顯微鏡下的台獨》,陸軍總司令部政戰部,1989年。
15. 184. 陳明通、王智盛〈2000年總統大選民進黨中國政策之研究〉,《中國事務》第一期,台北:新境界文教基金會,2000年7月。