跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊博名
研究生(外文):Yang-bo Ming
論文名稱:消毒對生物膜活性之影響
論文名稱(外文):Effect of Disinfection on the Bioactivity of Biofilm
指導教授:賴文亮賴文亮引用關係
指導教授(外文):Wen-Liang Lai
學位類別:碩士
校院名稱:大仁科技大學
系所名稱:環境管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:75
中文關鍵詞:66-diamidino-2-phenylindole)DAPI (4&apos&apos腺核甘三磷酸(ATP)消毒生物膜生物分解性環型反應器(ARs)CTC (5-cyano-23-ditolyl tetrazolium chloride)掃描式電子顯微鏡(SEM)
外文關鍵詞:ATP(Adenosine-5??-triphosphate bioluminescene teSEMDAPI (4??DisinfectCTC(5-cyano-2BiodegrableBiofilmARs (Annular Reactors system)3-ditolyl tetrazolium chloride)6-diamidino-2-phenylindole)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
配水管網生物之形成對飲用水質可能產生:(1)微生物擴大增殖其它有機體;(2)飲用水中的混濁、味覺以及色度;(3)由鐵跟錳氧化管壁及生物膜產生紅水及黑水;(4)高量的HPC菌易干擾大腸菌的計數;(5)處於厭氣條件環境之下易產生硫化氫H2S,而積聚依附過量生物膜導致管璧的腐蝕;(6)壓力水頭損失,減少水流量;(7)影響加氯滅菌之效果;(8)為防蝕控制添加磷所導致微生物的滋生;(9)當生物膜剝落進入配水系統,導致民眾飲用水風險提高(如腸胃炎)。
由文獻中得知生物膜生長之控制,降低有機物含量及配合消毒劑之使用應是可行之方式,然而對於管網系統中,消毒劑對水相及生物膜之細菌活性之影響,釵h研究者均以實驗室配製之有機物或植入單一細菌進行生物膜生成之模擬,此與實際現況相去甚遠,結果之應用亦是相對困難。環形反應器 (Annular Reactors system, ARs, Model 1120, Biosurface, USA)由於具動態模擬之弁遄A包括水力停留時間及轉速控制,可模擬水流流經自來水管線之水力停留時間及剪應力對水相及生物膜細菌分佈之影響,故本研究以其作為評估物理及化學參數對配水管網生物膜消長之影響之工具。
研究結果顯示,對生物膜最佳形成量,以DAPI染劑進行染色計數表示,當ARs系統控制水流量20 mL/min與轉速134 rpm最佳。此外不同分子量有機物之生物分解性以實驗室建立之BDOC濾床進行比較,發現大於30 K Da者低於5K Da,且5天後在生物濾床之分解率前者僅達60%,後者則達100%。墊片材質生物膜之總菌數,在相同水流量、轉速與小於5K有機碳量下,墊片表面上附著之總細菌數,水泥>>聚碳酸酯>聚氯乙烯材質。
二氧化氯(ClO2)對浮游性及生物膜細菌活性之影響,當0.2 mg as ClO2 as Cl2/L),活菌與死菌數之百分比,水相及固定相恰呈相反之趨勢;在高ClO2之劑量時(1.0、1.5 mg as Cl2/L)、水相與生物膜之活菌佔總菌數百分比,兩者都隨反應時間之增加而減少。
澄清湖原水中小於5K Da之有機物,經螢光光譜圖得知含蛋白質及腐植型之結構,經ARs系統操作後,浮游性及生物膜之細菌可能產生蛋白質結構之有機物。另水樣經0.2與0.45 μm濾膜過濾後,後者較前者多一激發及發射波峰位置(270/300 (nm)),此表示系統中某種細菌可產生螢光。
Biofilm formation in the distribution system may deteriorate water quality in drinking water, such as (1) the starting point of a trophic food web leading to the proliferation of higher organisms;(2) the generation of turbidity, taste, and odours;(3) the production of red and black waters resulted from the activity of both manganese and iron oxidizing bacteria;(4) higher HPC interfering with detection of coliforms or sanitary indicators;(5) the accumulation of attached biomass promoting corrosion, particularly under anaerobic conditions with the production of H2S;(6) the loss of pressure or the decrease of water flow;(7) the inhibition of disinfection efficiency of oxidant by biofilm;and (9) raising the risk of drinking for people owing to the biofilm peeling off in the distribution system .
Regarding to the control of biofilms, decreasing the content of organic matter and adding suitable oxidant dosage are feasible ways suggested by many researchers. But for the effect of oxidant on bioactivities of planktonic bacteria and biofilm in the distribution, pure target compounds and single pure inoculum were always selected to perform in some lboratories. .It is diffcultly to simulate in-situ situation owing to remakedly different water quality and flow conditions. In recent years, the annular reactor system (ARs), with stimutaneously changing flow volume and flow velocity, is recognized a feasible tool to simulate hadraulic resident time and shear force as result of drinking water flows through in the distribution system. Therefore, in this research, the effects of physical condition, , material of slide, and oxidant on the biofilm formation in ARs were conducted and compared. .
Based on results conducted, the optimal biofilm formation in ARs system, expressed by total bacterial cells enumerated by staining of DAPI (4′,6-diamidino-2-phenylindole), can reache at condition of 20 mL/min of flow rate and 134 rpm of the rotational speed. As for DOC decrease at same initial values for 30 K Da and 5 K Da, measured by BDOC filter,, greater than 30 K Da was less than smaller than 5 K Da. At five days, only 60% DOC can be utilized by BDOC filter for the former, while 100% of DOC was decomposed for the latter. The difference of microorganisms attached on the surface, including cement, polycarbonate and polyvinyl chloride, were compared and operated in constant conditions. It reveals that that total bacteria counts per cm2, its values were ere in the order of cement, polycarbonate, and polyvinyl chloride.
Regarding the chlorine dioxide (ClO2) on the bioactivity of planktonic and biofilm in ARs, the ratio of active to dead bacteria, in 0.2 mg-ClO2 as Cl2/L, there existed opposite trend in both phase, indicating that value in bulk decreased with operational time, but value in biofilm increased with operational time. At higher chlorine dioxide dosage (1 and 1.5 mg-ClO2 as Cl2/L), the ratio of active to dead bacteria at both phase, it decreased with operation time.
The organic property of 5 K Da was characterized by fluorescent spetrophtometer, revealing that two kind of organic maater, such as protein –like and humic-like were possiblely existed in. Comparing the water sample taken from ARs, possible protein-like was produce when originate organic matter was utilized by planktonic and biofilm bacteria. Meantime, bacteria existed in ARs can show fluoresent ability by comparing the EEFMs of water sample respectively filtered by 0.2 and 0.45 μm.
壹、前言 1
一、研究緣起 1
二、目的 1
貳、文獻回顧 3
一、配水管網中生物膜之形成與菌相分佈 3
(一)生物膜之形成 3
(二)管網生物膜菌相分佈 6
(三)生物膜對配水系統水質之影響 10
二、生物膜形成評估及影響參數 10
(一)物理參數 12
(二)化學參數 15
(三)消毒劑 16
參、研究流程實驗設備與分析方法 20
一、研究流程架構 20
二、環型反應器 22
(一)系統本體組裝 23
(二)生物膜片之材質選定 23
三、參數分析 24
(一)水質參數分析 24
(二)溶解性有機碳 24
(三)螢光激發與發射光譜圖 25
(四)二氧化氯(ClO2) 26
(五)有機物分子量之分離與濃縮 27
(六)生物性參數 28
肆、結果討論 36
一、人工原水之製備 36
二、水力操作參數對系統生物膜生成之影響 37
(一)流量 39
(二)轉速 41
三、有機物與墊片性質對ARs系統生物膜生成之影響 42
(一)有機物性質 42
(二)墊片材質 45
四、消毒對ARs系統中水相及生物膜細菌活性之影響 46
(一)以CTC與DAPI染色方式判別 46
(二)ATP 51
(三)以掃描式電子顯微鏡與螢光顯微鏡進行菌相表面觀測 53
五、ARs系統中水相有機物性質之變化 57
伍、結論 60
陸、建議 61
參考文獻 62
附錄 69
作者簡介 74
任志正、王中奇(1999) ATP生物冷光反應技術應用在生乳生菌數之快速檢測。中國畜牧學會會誌 第28卷 第3期,第395~400頁。
吳芳瑜 (2003) 配水系統中生物膜族群發展之監測。逢甲大學環境工程與科學系,碩士論文。
李舒寧 (2000) 自來水配水系統中餘氯消耗速率之研究。國立中興大學環境工程學系,碩士論文。
林建宏 (2005) 水中生物可分解有機碳之測定。大仁科技大學環境管理研究所,碩士論文。
張志文 (2005) 藻相之顯微鏡照相及其萃出液之螢光光譜圖特性分析。大仁科技大學環境管理研究所,碩士論文。
郭奐儀 (2001) 實驗室模擬配水系統生物膜形成之探討。逢甲大學土木與水利工程研究所,碩士論文。
謝長憲 (2000)加氯量對自來水不鏽鋼管線生物膜消長影響之研究。國立中興大學環境工程學系,碩士論文。
Boualam, M., Fass, S., Saby, S., Lahoussine, V., Cavard, J., Gatel, D. and Mathieu, L. (2003) Organic matter quality and survival of coliforms in low-nutritive waters. Jour. AWWA. 95:8:119-126.
Characklis, W. G. and Cooksey, K. E. (1983) Biofilm and microbial fouling. Adv. Appl. Microbiol. 29:93.
Chamberlain, A. H. L. (1992) The role of a adsorbed layers in bacterial adhesion, in Biofilms-Science and Technology. May 18-29, Kulwer Academic Publishers, London. 59.
Cappelier, J. M., Lazaro, B., Rossero, A., Femandez-Astorga, A. and Federighi, M. (1997) double staining (CTC-DAPI) for detection and ceumeration of viable but non-culturable Campylobacter jejuni cells. Wat. Res. 28:547-555.
Carter, J. T., Rice, E. W., Buchberger, S. G. and Lee, Y. (2000) Relationships between levels of heterotrophic bacteria and water quality parameters in a drinking water distribution system. Wat. Res. 34:5:1495-1502.
Chen, X. and Stewart, P. S. (2000) Biofilm removal caused by chemical treatments. Wat. Res. 34:17:4229- 4233.
Chandy, J. P. and Angles, M. L. (2001) Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay.Wat. Res. 35:11:2677-2682.
Camper, A., Brastrp, K., Sandvig, A., Clement, J., Spencer, C. and Capuzzi, A. J. (2003) Effect of distribution system materials on bacterial regrowth. Jour. AWWA. 95:7:107-121.
Determann, S., Lobbes, J. M., Reuter, R. and Rullkotter, J. (1998) Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Mar. Chem. 62:137-156.
Fransolet, G., Villers, G., Goyens, A. and Masschelein, W. J. (1986) Metabolic identification of germs identified form ozonized water mixed with underground water. Ozone Sci. Eng. 8:95.
Greetham, M., Holden, B. and Scutt, J. (1995) Use of ENZYME SOMASW ® in the measurement of biofilm using biolumicescence. Wat. Sci. Tech. 32:8:221-225.
Gagnona, G. A. and Slawsonb, R. M. (1999) An efficient biofilm removal method for bacterial cells exposed to drinking water. J. Microbiol. Methods. 34:203–214.
Griebe, T. (2000) Roating annular reactors for controlled growth of biofilms. Biofilms Investigative Methods & Applications.Chapter 2 :23-40.
Huang, C. T., Yu, F. P., Mcfeters, G. A. and Stewart, P. S. (1995) Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl. Envir. Microbiol. 61:6:2252-2256.
Hallam, N. B., West, J. R., Forster, C. F. and Simms, J. (2001) The poten for biofilm growth in water distribution systems. Wat. Res. 35:17:4063-4071.
Her, N., Amy, G., Park, H. R. and Song, M. (2004) Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Wat. Res. 38:1427-1438.
Kepner, R. L. and Pratt, J. R. (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Micro. Rev. 58:603-615.
LeChevallier, M. W., Babcock, T. M. and Lee, R. G. (1987) Examination and characterization of distribution system biofilms. Appl. Environ. Microbiol. 53:12:2714-2724.
LeChevallier, M. W., (1990) Coliform regrowth in drinking water. A review. Jour. AWWA. 82:11:74.
Liu, W., Wu H., Wang, Z., Ong, S. L., Hu, J. Y. and Ng, W. J. (2002) Invstigation of assimilable organic carbon (AOC) and bacterial regrowth in dring water distribution system. Wat. Res. 36:891-898.
Lu, C. and Chu, C. (2005) Effect of acetic acid on the regrowth of heterotrophic bacteria in the drinking water distribution system. World J. Microbiol. Biotechnol. 21:989-998, B-2-2.
McCoy, W. F., Bryers, J. D., Robbins, J. D. and Costerton, J. W. (1981) Observations of fouling biofilm formation, Can. J. Microbiol. 27:910-917.
Mopper, K. and Schultz, C. A. (1993) Fluorescence as a possible tool studying the nature and water column distribution of DOC compoents. Mar. Chem. 41:229-238.
Massol-Deya, A. A., Whallon, J., Hickey, R. F. and Tiedje, J. M. (1995) Channel structure in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Appl. Environ. Microbiol. 61:769-777.
Melo, L. F. and Vieira, M. J. (1999) Physical stability and biological activity of biofilms under turbulent flow and low substrate concentration. Bioprocess Eng. 20:363-368.
Morton, S. C., Zhang, Y. and Edward, M. (2005) Implicatons of nutrient release form iron metal for microbial regrowth in water distribution systems. Wat. Res.39:2883-2892.
Niquette, P., Servais, P., and Savoir, R. (2000) Impacts of pipe materials on densities of fixed bacterial biofilm in a drinking water distribution system. Wat. Res. 34:6:1952-1956.
Norton, C. D. and LeChecvallier, M. W. (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl. Environ. Microbiol. pp.268-276.
Payment, P., Gamache, F. and Paquette, G. (1988) Microbiological and virological analysis of water form two water filtration plants and their distribution systems. Can. J. Microbiol. 34:1304-1309.
Percival, S. L., Knapp, J. S., Edyvean, R. and Wales, D. S. (1998) Biofilm development on stainless steel in mains water. Wat. Res. 32:1:243-253.
Purevdorj B., Costerton, J. W. and Stoodley, P. (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. pp.4457-4464.
Rodriguez, G. G., Phipps, D., Ishiguro, K. and Ridgway, H. (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58:6:1801-1808.
Servais, P., Billen, G., Ventresque, C. and Bablon, G. P. (1991) Microbial Activity in GAC Filters at the Choisy-Le-Roi Treatment Plant. Jour. AWWA. 83:2:62~68.
Schaule, G., Flemming, H. -C. and Ridgway, H. F. (1993) Use of 5-Cyano-2,3-Ditolyl Tetrazolium Chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl. Environ. Microbiol. 59:11:3850-3857.
Stewart, P. S., Murga, R., Srinivasan, R. and Beer, D. de. (1995) Biofilm structural heterogeneity visualized by three microscopy method. Wat. Res. 29:8:2006-2009.
Saby, S., Sibille, I., Mathieu, L., Paquin, J. L. and Block, J. C. (1997) Influence of water chlorination on the counting of bacteria with DAPI (4’6-Diamidino-2-Phenylindloe). Appl. Environ. Microbiol. 63:4:1564-1569.
Stewart, P. S., Camper, A. K., Handran, S. D., Huang, C. –T. and Warnecke, M. (1997) Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb. Ecol. 33:2-10.
Schwartz, T., Hoffmann, S. and Obst, U. (1998) Formation and bacterial composition of young, natural biofilms obtained form public bank-filtered drinking water system. Wat. Res. 32:9:2787-2797.
Tsai, Y. P., Pai, T.Y. and Qiu, J.M. (2004) The impacts of the AOC concentration on biofilm formation under higher shear force condition. J. Biotechnol. 111:155-167.
Tsai, Y. P. (2005) Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition. J. Basic Microbiol. 45:475-485.
Van der Kooij, D., Visser, A. and Oranje, J. P. (1982) Multiplication of fluorescent pseudomonads at low substrate concentrations in tap water. Antonie van Leeuwenhoek. 48:229-243.
Van der Kooij, D., Visser, A. and Hijiner, W. A. M. ( 1982) Determining the concentration of easily addimilable organic carbon in drinking water . Jour. AWWA. 74:540.
Van der Wende, E., Characklis, W. G. and Smith, D. B. (1989) Biofilm and bacterial drinking water quality. Wat. Res. 23:1313-1322.
Van der Kooij, D. (1992) Assimilable organic carbon as an indicator of bacterial regrowth. Jour. AWWA. 84:2:57-65.
Van der Kooij, D. (2000) Biological stability:A multidimensional quality aspect of treated water. Water. Air, and Soil Pollution. 123:25-34.
Yu, F. P. and McFeters, A. (1994) Rapid in situ assessment of physiological activities in bacterial biofilm using fluoresecent probes. J. Microbiol. Methods. 20:1-10.
Zacheus, O. M., Iivanainen, E. K. and Nissinen, T. K. (2000) Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Wat. Res. 34:1:63-70.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top