跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊淳喬
研究生(外文):Chun-Chiao Juang
論文名稱:建立肝臟去氧核醣核酸病毒中共價閉合環狀去氧核醣 核酸的報告基因系統
論文名稱(外文):Construction of a Reporter System for the formation of hepadnavirus covalently closed circular DNA
指導教授:楊宏志楊宏志引用關係
口試委員:施嘉和葉秀慧董馨蓮
口試日期:2013-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:59
中文關鍵詞:B 型肝炎病毒鴨子B 型肝炎病毒共價閉合環狀去氧核醣核酸偵測基因南方墨點法
外文關鍵詞:Hepatitis B virus (HBV)Duck hepatits B virus (DHBV)cccDNAreporter genesSouthern blotcomplementation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Hepadnavirus, including hepatitis B virus (HBV), possesses a partial double-strand DNA genome, also known as relaxed circular DNA (RC-DNA), which is converted to covalently closed circular DNA (cccDNA), a critical template for hepadnavirus replication, after entry to the hepatocytes. However, little is known about the detailed mechanisms regulating the conversion from RC-DNA to cccDNA. Detection of cccDNA usually requires Southern blotting, which is quite labor-intensive. Therefore, a convenient in vitro cccDNA reporter system should facilitate the research of cccDNA. However, in the present there is still no in vivo and in vitro system that can support efficient HBV infection and cccDNA formation. In contrast, duck hepatitis B virus (DHBV) can efficiently form cccDNA in human cell lines as long as its pregenomic DNA is made. In this study, we utilized DHBV system to construct the cccDNA reporter for ready detection of cccDNA formation. We first showed that trans-complementation of core and polymerase could rescue the replication cycle of core- and polymerase-deficient DHBV mutants. We then generated an array of deletion mutations that spanning the region between the start codons of core and polymerase genes. Interestingly, we found that the region between the poly A signal and the start codon of polymerase gene could be deleted without significant reduction of cccDNA formation. Thus, we inserted two reporter genes, the zeocin-resistant gene and a fluorescent protein into this region. Using Southern blotting, we demonstrated that they both maintain the ability to produce cccDNA and RC-DNA, indicating the feasibility of our reporter system. Further experiments are required to prove its utility in serving as a reporter of hepadnavirus cccDNA.

中文摘要 ........................................ 5
ABSTRACT .................................... 6
TABLE of CONTENTS .................. 8
LIST of FIGURES ........................ 10
1. INTRODUCTION ................... 11
1.1 The history of hepatitis B virus .................... 11
1.2 The classification of hepatitis B virus ............................... 11
1.3 Epidemiology and the natural history of HBV infection .................... 12
1.4 The current challenges in treatment of chronic HBV infection ...... 14
1.5 Virion structure and genome organization ..................... 15
1.6 The replication cycle of human HBV .................................. 16
1.6.1 HBV replication cycle ....................... 16
1.6.2 From pgRNA to RC-DNA (Reverse transcription) .............. 17
1.6.3 From RC-DNA to cccDNA ................ 18
1.7 DHBV, a good model for studying cccDNA formation of hepadnaviruses .......... 19
1.8 DHBV cis-acting sequences that contribute to the replication cycle .................... 19
1.8.1 DHBV cis-acting sequences involved in encapsidation ........................... 19
1.8.2 DHBV cis-acting sequence that contribute to negative-strand DNA synthesis. .. 20
1.8.3 DHBV cis-acting sequence that contribute to RC-DNA positive-strand synthesis and cccDNA formation............................... 21
1.9 The effect of the size of the inserted DNA on DHBV replication ..... 21
2. SPECIFIC AIM ........................ 23
3. MATERIAL AND METHODS ...................... 24
3.1 Plasmids ........................................ 24
3.2 Cell lines and cell culture system ................. 25
3.3 DNA transfection ......................... 26
3.4 Modified Hirts’ extraction method .............. 27
3.5 Southern blot analysis ..................................... 28
3.6 DIG-labeled DNA probe synthesis ................ 29
4. RESULTS .................................. 31


4.1 The strategies to construct a DHBV cccDNA reporter ........................ 31
4.2 Production of RC-DNA and cccDNA from the DHBV expression plasmids .......... 32
4.3 Complementation of the core- and polymerase-deficient DHBV by the core- and polymerase-expressing vectors .................. 33
4.4 Construct of a series of core-deletion DHBV mutants ........................ 35
4.5 Construct of the cccDNA reporters D1SVC155 and D1SZeocin ........ 36
4.6 Construct of the DHBV1S dimer for analysis the activity of the DHBV promoter in Huh7 cells ....................................... 38
5. DISCUSSION ........................... 40
6.REFERENCE ............................ 44
7. FIGURE ................................... 49


LIST of FIGURES
Figure 1. The life cycle of HBV. .............. 49
Figure 2. Establishment of a cccDNA reporter system……………………50
Figure 3. Formation of RC-DNA and cccDNA in 293T and Huh7 cells transfected with DHBV and DHBV1S plasmids. ............................. 51
Figure 4. Complementation of core-deficient and polymerase-deficient DHBV mutants. ............................. 52
Figure 5. Complementation of series of core-deletion DHBV mutants. .................. 54
Figure 6. Bimolecular fluorescence complementation of Venus fluorescence genes. .................... 56
Figure 7. Complementation of D1SVC155. .................. 57
Figure 8. Complementation of D1SZeocin. .................. 58
Figure 9. Formation of RC-DNA and cccDNA in Huh7 cells transfected with DHBV1S dimer plasmid. ......................... 59


1. MacCallum, F. O. 1947. Homologous serum jaundice. Lancet. 2: 691-692.
2. World Health Organization. 1973.
3. Blumberg, B. S. 1977. Australia antigen and the biology of Hepatitis B. Science.
4. Blumberg, B. S., B. J. Gerstley, D. A. Hungerford, W. T. London, and A. I. Sutnick. 1967. A serum antigen (Australia antigen) in Down''s syndrome, leukemia,and hepatitis. Annals of internal medicine. 66: 924-931.
5. Prince, A.M. 1968. An antigen detected in the blood during the incubation period of serum hepatitis. Proc. Natl Acad Sci USA. 60: 814-821.
6. Dane, D. S., C. H. Cameron, and M. Briggs. 1970. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1: 695-698.
7. Jilbert, A.R., and I. Kotlarski. 2000. Immune responses to duck hepatitis B virus infection Developmental and Comparative. Immunology. 24: 285-302.
8. Schaefer, S. 2006. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World Journal of Gastroenterology. 13: 13-21.
9. Kurbanov,F., Y. Tanaka, and M. Mizokami. 2010. Geographical and genetic diversity of the human hepatitis B virus. Hepatology Research. 40: 14-30.
10. Liaw, Y.F., C.M. Chu. 2009. Hepatitis B virus infection. Lancet. 373: 582-592.
11. Chang, M.H. 2007.Hepatitis B virus infection. Fetal and Neonatal Medicine. 12:160-167.
12. Woo G., G. Tomlinson, Y. Nishikawa, M. Kowgier, M. Sherman, D. K. H. Wong, B. Pham, W. J. Ungar, T. R. Einarson, E. J. Heathcote, and M. Krahn. 2010. Tenofovir and Entecavir are the most effective antiviral agents for chronic hepatitis B: A systematic review and bayesian meta-analyses. Gastroenterology.139:1218–1229.
13. Dienstag J.L. 2008. Hepatitis B Virus Infection. N. ENGL. J. MED. 359:1486-1500.
14. Kaplan P.M., R.L. Greenman, J.L. Gerin, R.H. Purcell, and W.S. Robinson.1973. DNA Polymerase associated with human hepatitis B antigen. J. Virol. 12:995-1005.
15. Bottcher B., S.A, Wynne, and R.A. Crowther. 1997. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature. 386: 88-91.
16. Crowther F.A., N.A. Kiselev, B. Bottcher, J.A. Berriman, G.P. Borisova, S.V. Ose, and P. Pumpens. 1994. Three-dimensional structure of hepatitis b virus core particles determined by electron cryomicroscopy. Cell. 77: 943-950.
17. Glebe D., and C.M. Bremer. 2013. The molecular virology of hepatitis B virus. seminars in liver disease. 33: 103-112.
18. Kann M., A. Schmitz, and B. Rabe. 2007. Intracellular transport of hepatitis B virus. World J. Gastroenterol. 13: 39–47.
19. Bartenschlager R., M. Junker-Niepmann, and H. Schaller. 1990. The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J. Virol. 64: 5324–5332.
20. Knaus T., and M. Nassal. 1993. The encapsidation signal on the hepatitis B virus RNA pregenome forms a stem-loop structure that is critical for its function. Nucleic Acids Res. 21: 3967–3975.
21. Zhang Y.Y., B.H. Zhang, D. Theele, S. Litwin, E. Toll, and J. Summers. 2003. Single-cell analysis of covalently closed circular DNA copy numbers in a hepa- dnavirus-infected liver. Proc. Natl. Acad. Sci. U.S.A. 100: 12372–12377.
22. Bruss V. 2007. Hepatitis B virus morphogenesis. World J. Gastroenterol. 13: 65–73.
23. Lambert C., T.D oring, and R. Prange. 2007. Hepatitis B virus maturation is sen-sitive to functional inhibition of ESCRT-III, Vps4, and
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top