|
[1]A. Alleyne and J. K. Hedrick, “Nonlinear adaptive control of active suspension,” IEEE Trans. Control Systems Technology, vol. 3, no. 1, pp. 94-101, 1995. [2]M. Appleyard and P. E. Wellstead, “Active suspensions: some background,” IEE Proc. on Control Theory Appl., vol. 142, no. 2, pp. 123-128, 1995. [3]G. D. Buckner, K. T. Schuetze, and J. H. Beno, “Intelligent feedback linearization for active vehicle suspension control,” ASME J. Dyn. Syst., Measurement, Contr., vol. 123, pp. 727-736, 2001. [4]A. W. Burton, A. J. Truscott, and P. E. Wellstead, “Analysis, modeling and control of an advanced automotive self-leveling suspension system,” IEE Proc. on Control Theory Appl., vol. 142, no. 2, pp. 129-139, 1995. [5]Y. J. Cao, “Eigenvalue optimization problem via evolutionary programming,” Electronics Letters, vol. 33, no. 7, pp. 642-645, 1997. [6]W. Chen, H. Xiao, L. Liu, and J. W. Zu, “Integrated control of automotive electrical power steering and active suspension systems based on random sub-optimal control,” Int. J. Vehicle Design, vol. 42, no. 3, pp. 370-391, 2006. [7]S. B. Choi, Y. T. Choi, and D. W. Park, “A sliding mode control of a full-car electrorheological suspension system via hardware in-the-loop simulation,” ASME J. Dyn. Syst., Measurement, Contr., vol. 122, pp. 114-121, 2000. [8]A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter Control in Evolutionary Algorithms,” IEEE Trans. Evolutionary Computation, vol. 3, no. 2, pp. 124-141, 1999. [9]I. Fialho and G. J. Balas, “Road adaptive active suspension design using linear parameter-varying gain-scheduling,” IEEE Trans. on Control Systems Technology, vol. 10, pp. 43-54, 2002. [10]L. J. Fogel, A. J. Owens, and M. J. Walsh, Intelligence through simulated evolution: forty years of evolutionary programming, Wiley, 1966. [11]S. J. Huang and W. C. Lin, “Adaptive fuzzy controller with sliding surface for vehicle suspension control,” IEEE Trans. on Fuzzy Systems, vol. 11, pp. 550-559, 2003. [12]Y. J. Jang and S. W. Kim, “Gain-scheduled control for an active suspension system with an asymmetric hydraulic actuator,” IEICE Trans. On Fundamentals of Electronics, Communications and Computer, vol. E85-A, no. 4, pp.903-908, 2002. [13]J. H. Kim and H. Myung, “Evolutionary programming techniques for constrained optimization problems,” IEEE Trans. Evolutionary Computation, vol. 1, no. 2, pp. 129-140, 1997. [14]Y. P. Kuo, and T. H. S. Li, “GA-based fuzzy PI/PD controllers for automotive active suspension system,” IEEE Trans. Industrial Electronics, vol. 46, no. 6, pp. 1051-1056, 1999. [15]Y. P. Kuo, Automobile suspension system design via evolutionary algorithms and fuzzy logic, Ph.D. Dissertation, National Cheng Kung Univ., Taiwan, 2000. [16]C. L. Kuo, Study of fuzzy sliding-mode control for magnetic ball levitation systems, Ph.D. Dissertation, National Cheng Kung Univ., Taiwan, 2006. [17]C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, part I and II,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404-435, 1990. [18]T. H. S. Li and Y. P. Kuo, “Evolutionary algorithms for passive suspension systems,” Int. J. JSME, vol. 43, no. 3, 537-544, 2000. [19]Y. J. Lin, Y. Q. Lu, and J. Padovan, ”Fuzzy logic control of vehicle suspension system,” Int. J. Vehicle Design, vol. 14, pp. 457-470, 1993. [20]J. Lu and M. Depoyster, “Multiobjective optimal suspension control to achieve integrated ride and handling performance,” IEEE Trans. Control Systems Technology, vol. 10, no. 6, pp. 807-820, 2002. [21]R. Rajemani and J. K. Hedrick, “Adaptive observers for active automotive suspensions: Theory and experiment,” IEEE Trans. Control Systems Technology, vol. 3, no. 1, pp. 86-93, 1995. [22]J. D. Robson, “Road surface description and vehicle response,” Int. J. Vehicle Design, vol. 1, 25-35, 1979. [23]M. C. Smith and F. C. Wang , “Controller parameterization for disturbance response decoupling: Application to vehicle active suspension control,” IEEE Trans. Control Systems Technology, vol. 10, no. 3, pp. 393-407, 2002. [24]C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Trans. SMC Part. B, vol. 33, no. 2, pp. 283-294, 2003. [25]C. S. Ting, T. H. S. Li, and F. C. Kung, “Design of fuzzy controller for active suspension system,” Mechatronics, vol. 5, no. 4, pp. 365-384, 1995. [26]A. G. Thompson and C. E. M. Pearce, “Performance index for a preview active suspension applied to a quarter-car model,” Vehicle System Dynamics, vol. 35, pp. 55-66, 2001. [27]S. Türkay and H. Akçay, “Aspects of achievable performance for quarter-car active suspensions,” Journal of Sound and Vibration, vol. 311, no. 1-2, pp. 440-460, 2008. [28]M. Vala’sek, M. Nova’k, Z. Sika, and O. Vaculi’n, “Extend ground hook-new concept of semi-active control of truck’s suspension,” Vehicle System Dynamics, vol. 27, pp.289-303, 1997. [29]A. J. Vander Schaft, “ -gain analysis of nonlinear systems and nonlinear state feedback control,” IEEE Trans. Automat. Contr., vol. 37, pp. 770-784, 1992. [30]P. J. T. Venhovens, “The development and implementation of adaptive semi-active suspension control,” Vehicle System Dynamics, vol. 23, pp.211-235, 1994. [31]H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, pp. 14-23, 1996. [32]S. Weiland and J. C. Willems, “Almost disturbance decoupling with internal stability,” IEEE Trans. Automat. Contr., vol. 34, no.3, pp. 277-286, Mar. 1989. [33]P. J. Werbos, “New tools for prediction and analysis in the behavioral science,” Ph. D. Dissertation in Applied Mathematics, Harvard University, Cambridge, Massachusetts, 1974. [34]J. C. Willems, “Almost invariant subspace: An approach to high gain feedback design - Part I: Almost controlled invariant subspaces,” IEEE Trans. Automat. Contr., vol. 26, no. 1, pp. 235-252, 1981. [35]R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control. New York: Wiley, 1994. [36]N. Yagiz, Y. Hacioglu, and Y. Taskin, “Fuzzy sliding-mode control of active suspensions,” IEEE Trans. Industrial Electronics, vol. 55, no. 11, pp. 3883-3890, 2008. [37]P. P. Yip and J. K. Hedrick, “Adaptive dynamic surface control: A simplified algorithm for adaptive backstepping control of nonlinear systems,” Int. J. of Control, vol. 71, no. 5, pp. 959-979, 1998. [38]B. Yoo and W. Ham, “Adaptive fuzzy sliding mode control of nonlinear system,” IEEE Trans. Fuzzy Systems, vol. 6, no. 2, pp. 315-321, 1998. [39]I. Youn and A. Hac, “Preview control of active suspension with integral action,” Int. J. of Automotive Technology, vol. 7, no. 5, pp. 547-554, 2006. [40]I. Youn, J. Im, and M. Tomizuka, “Level and attitude control of the active suspension system with integral and derivative action,” Vehicle System Dynamics, vol. 44, no. 9, pp. 659-674, 2006. [41]C. Yue, T. Butsuen, and J. K. Hedrick, “Alternative control for automotive active suspensions,” ASME J. of Dynamic Systems Measurement and Control, pp. 316-334, 1989. [42]X. Yu, Z. Man, and B. Wu, “Design of fuzzy sliding-mode control systems,” Fuzzy Sets and Systems, vol. 95, pp. 295-236, 1998. [43]L. A. Zadeh, “Fuzzy sets,” Inf. Contr., vol. 8 , pp. 338-35, 1965.
|