跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/17 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建中
研究生(外文):Chien-Chung Chen
論文名稱:以導電性聚苯胺建構過氧化氫生物感測器之技術及其性質探討
論文名稱(外文):The techniques and characterizations for constructing hydrogen peroxide biosensors by conductive polyaniline
指導教授:顧野松杜景順
指導教授(外文):Yesong GuJing-Shan Do
學位類別:博士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
中文關鍵詞:過氧化氫生物感測器辣根過氧化酵素聚苯胺
外文關鍵詞:hydrogen peroxidebiosensorhorseradish peroxidasepolyanilineSBA-15
相關次數:
  • 被引用被引用:7
  • 點閱點閱:722
  • 評分評分:
  • 下載下載:266
  • 收藏至我的研究室書目清單書目收藏:0
本論文中以導電性聚苯胺(PANI)為電極表面修飾高分子,以循環伏安法(CV)聚合PANI於Pt/Al2O3電極表面製備成PANI/Pt/Al2O3電極,再使用電吸附法固定化HRP酵素並以戊二醛(GA)為交聯劑,製備GA-HRP/PANI/Pt/Al2O3電極。另外,在PANI聚合過程中添加牛血清蛋白(BSA),分別製備為PANI(BSA)/Al2O3與GA-HRP/PANI(BSA)/Al2O3兩種電極。此外,研究過程中亦合成中孔矽材料SBA-15,作為HRP固定化的載體,應用於GA/SBA-15(HRP)/PANI/Pt/Al2O3電極的製備。將上述製備所得的電極使用CV法感測過氧化氫,探討電極之感測特性。另外,探討了溶氧對於PANI/Pt/Al2O3電極感測過氧化氫的影響,並嘗試添加除氧劑於感測系統中,去除溶氧的影響。
分別以GA-HRP/PANI/Pt/Al2O3與GA-HRP/PANI(BSA)/Pt/Al2O3電極於0.1 M磷酸鹽緩衝溶液(pH 6.2)中感測過氧化氫,其感測濃度線性範圍為10 μM ~ 23.9 mM與10 μM ~ 35.2 mM,感測靈敏度由37.55提升至44.31 μA mM-1。在穩定性測試,分別使用PANI/Pt/Al2O3與PANI(BSA)/Pt/Al2O3電極於17天中21次感測2.39 mM的過氧化氫,可發現在第17天的剩餘感測活性由PANI/Pt/Al2O3電極的40.8 %提升至PANI(BSA)/Pt/Al2O3電極的80.5 %,顯示PANI中包埋BSA對於感測的靈敏度與穩定性有顯著的提升。在干擾測試方面,分別添加濃度為0.5 mM的尿酸 、尿素與維它命C於含有2.39 mM過氧化氫的感測系統中,對於GA-HRP/PANI/Pt/Al2O3電極的感測靈敏度與還原電流的影響皆小10 %。
在GA-HRP/PANI/Pt/Al2O3與GA/SBA-15(HRP)/PANI/Pt/Al2O3電極比較部份,於0.1 M磷酸鹽緩衝溶液(pH 6.2)中感測過氧化氫,感測濃度線性範圍皆為10 μM ~ 23.9 mM,GA/SBA-15(HRP)/PANI/Pt/Al2O3電極的靈敏度由不含SBA-15的37.55 μA mM-1下降至25.05 μA mM-1,於16天中15次感測1.96 mM的過氧化氫,在第16天的感測剩餘感測活性由GA-HRP/PANI/Pt/Al2O3電極的40.5 %提升至PANI(BSA)/Pt/Al2O3電極的75.2 %,顯示HRP酵素固定於SBA-15中對於活性的穩定有明顯的幫助。
使用除氧劑去除溶液中溶氧的影響部份,實驗結果顯示添加硫代硫酸鈉可有效去除溶液中溶氧,當添加濃度小於1 mM時,可有效去除溶液中的溶氧並不會影響過氧化氫的感測濃度。
In this study, the PANI or PANI(BSA) films was electrochemically synthesized on the Pt/Al2O3 base to form the PANI/Pt/Al2O3 or PANI(BSA)/Pt/Al2O3 electrode, and horseradish peroxidase (HRP) was then immobilized in PANI or PANI(BSA) films to construct the GA-HRP/PANI/Pt/Al2O3 or GA-HRP/PANI(BSA)/Pt/Al2O3 biosensor. Furthermore, the mesoporous silica SBA-15 was prepared and was employed to entrap HRP in order to construct a GA/SBA-15(HRP)/PANI/Pt/Al2O3 electrode. The properties and the performances of those bio-electrodes were fully investigated. Moreover, the influence of the dissolved oxygen on sensing of hydrogen peroxide with those PANI modified electrode was discussed and the possible elimination was proposed by using oxygen scavengers.
For electrodes, such as GA-HRP/PANI/Pt/Al2O3 and GA-HRP/PANI(BSA)/Pt/Al2O3, the linear correlation for sensing hydrogen peroxide in a 0.1 M phosphate buffer were obtained in the range of 10 μM ~ 23.9 mM and 10 μM ~ 35.2 mM, respectively, while the sensitivities were 37.55 and 44.31μA mM-1, respectively. By comparing the stability after sensing 2.39 mM hydrogen peroxide for twenty-one times in a 17-day period, the percentage of residual response current were 40.8 % for PANI/Pt/Al2O3 and 80.5 % for PANI(BSA)/Pt/Al2O3, indicating that BSA was useful for improving the sensitivity and stability of PANI modified hydrogen peroxide biosensor. In addition, 0.5 mM of uric acid, urea, or ascorbic acid would cause less than 10% reduction of cyclic voltammetry (CV) current on sensing 2.39 mM hydrogen peroxide for GA-HRP/PANI/Pt/Al2O3.
For the electrode GA/SBA-15(HRP)/PANI/Pt/Al2O3, the linear correlation and the sensitivity for sensing hydrogen peroxide sensor in a 0.1 M phosphate buffer were obtained in the range of 10 ~ 23.9 mM and 25.05 μA mM-1, respectively. After sensing 1.96 mM hydrogen peroxide for fifteen times in a 16-day period, the percentage of residual response current were 75.2 %, which was better than that of GA-HRP/PANI/Pt/Al2O3 (40.5%), implicating that SBA-15 was also able to stabilize the entrapped HRP and therefore improved the performance of the constructed biosensor.
Finally, we demonstrated the influence of the dissolved oxygen on sensing hydrogen peroxide with PANI modified electrodes, and we proposed strategies to eliminate the influences. Our results inindicated that the oxygen scavenger such as sodium thiosulfate was able to effectively remove the dissolved oxygen, thereby reduce its effect on the performance of electrode, Meanwhile, sodium thiosulfate displayed the negligible effect on hydrogen peroxide measurements while its applied concentration was below 1 mM.
中文摘要..................................................................................................Ⅲ
Abstract.....................................................................................................Ⅴ
誌謝..........................................................................................................Ⅶ
目錄..........................................................................................................Ⅸ
圖目錄.................................................................................................. .XVI
表目錄..................................................................................................XXVI

第一章 緒論............................................................................................1
1.1 過氧化氫之簡介...........................................................................1
1.2 生物感測器之簡介.......................................................................4
1.2.1 生物感測器之定義與發展歷史回顧....................................4
1.2.2 生物感測器的分類..............................................................10
1.2.3 過氧化氫生物感測器之文獻回顧.................... .................15
1.3 酵素之簡介.................................................................................18
1.3.1 酵素之命名..........................................................................18
1.3.2 酵素的分類..........................................................................19
1.3.3 酵素的反應特性..................................................................20
1.3.4 辣根過氧化酵素(HRP)之簡介............................................21
1.3.4.1 HRP之結構介紹...........................................................22
1.3.4.2 HRP酵素催化過氧化氫反應機制...............................24
1.3.5 酵素固定化方法..................................................................24
1.4 導電性高分子簡介.....................................................................29
1.4.1 發展史..................................................................................29
1.4.2 導電性高分子的掺雜..........................................................32
1.4.3 導電性高分子之能帶理論與導電原理..............................32
1.4.4 導電性高分子的應用..........................................................36
1.4.5 導電性高分子聚苯胺..........................................................38
1.4.5.1 聚苯胺之結構型態與顏色變化...................................38
1.4.5.2 聚苯胺之合成...............................................................42
1.4.5.3 聚苯胺之紅外線光譜分析...........................................43
1.5 中孔矽材料簡介.........................................................................45
1.5.1 中孔矽材料之分類與發展歷史回顧..................................45
1.5.2 非離子界面活性劑介紹......................................................48
1.5.3 SBA-15之孔洞性質分析....................................................50
1.5.4 中孔矽材料之應用..............................................................60
1.6 研究動機.....................................................................................62

第二章 研究架構簡介..........................................................................64

第三章 研究設備與藥品......................................................................70
3.1 實驗儀器.....................................................................................70
3.2 實驗藥品.....................................................................................71
3.3 研究中所使用之貴重儀器簡介.................................................73

第四章 過氧化氫感測電極製備與感測性質分析..............................79
4.1 研究目的.....................................................................................79
4.2 實驗方法與程序.........................................................................80
4.2.1 溶液配製..............................................................................80
4.2.2 過氧化氫濃度標定..............................................................82
4.2.3 蛋白質定量分析..................................................................84
4.2.4 HRP酵素活性測定.............................................................86
4.2.5 電極之製備..........................................................................88
4.2.5.1 Ag/AgCl(3M NaCl)參考電極之製備...........................88
4.2.5.2 Pt/Al2O3電極之製備.....................................................89
4.2.5.3 PANI/Pt/Al2O3電極之製備...........................................91
4.2.5.4 GA-HRP/PANI/Pt/Al2O3酵素電極之製備...................93
4.2.6 過氧化氫感測性質測定......................................................95
4.3 實驗結果與討論.........................................................................97
4.3.1 過氧化氫濃度標定..............................................................97
4.3.2 電極之製備與感測性質測定..............................................99
4.3.2.1 PANI/Pt/Al2O3 電極之製備..........................................99
4.3.2.2 PANI/Pt/Al2O3 電極之表面型態觀察........................103
4.3.2.3 Pt/Al2O3 與PANI/Pt/Al2O3電極之性質分析.............105
4.3.2.4 GA-HRP/PANI/Pt/Al2O3酵素電極之PANI
聚合圈數對過氧化氫感測性質的影響....................108
4.3.2.5 戊二醛(GA)使用體積與濃度對於GA-HRP/PANI/Pt/Al2O3電極感測之影響................113
4.3.2.6 感測溶液pH值對於GA-HRP/PANI/Pt/Al2O3電
極感測之影響..............................................................119
4.3.2.7 GA-HRP/PANI/Pt/Al2O3電極感測之選擇性............121
4.3.2.8 使用GA-HRP/PANI/Pt/Al2O3電極感測尿液樣品…127
4.3.2.9 PANI/Pt/Al2O3與GA-HRP/PANI/Pt/Al2O3電
極之穩定性探討..........................................................130
4.4 小結..........................................................................................132

第五章 探討添加牛血清蛋白對於聚苯胺高分子膜的影響............133
5.1 研究目的...................................................................................133
5.2 實驗方法與程序.......................................................................134
5.2.1 PANI(BSA)/Pt/Al2O3電極之製備.....................................134
5.2.2 GA-HRP/PANI(BSA)/Pt/Al2O3酵素電極之製備.............135
5.3 實驗結果與討論.......................................................................137
5.3.1 PANI(BSA)/Pt/Al2O3 複合膜電極之製備與性質分析...137
5.3.1.1 PANI(BSA)/Pt/Al2O3 電極之製備.............................138
5.3.1.2 BSA最適添加量探討................................................140
5.3.1.3 FTIR 分析..................................................................144
5.3.1.4 TGA 分析...................................................................146
5.3.1.5 探討添加BSA所製備的電極對於過氧化氫
感測穩定性的影響......................................................148
5.4 小結..........................................................................................156

第六章 中孔矽材料SBA-15之合成與製備為電極之
感測性質分析........................................................................157
6.1 研究目的...................................................................................157
6.2 實驗方法與程序.......................................................................159
6.2.1 SBA-15 之合成.................................................................159
6.2.2 以SBA-15為載體固定HRP酵素探討...........................161
6.2.3 GA/SBA-15(HRP)/PANI/Pt/Al2O3酵素電極之製備........164
6.3 實驗結果與討論.......................................................................166
6.3.1 SBA-15之製備條件探討..................................................166
6.3.1.1 TGA分析....................................................................167
6.3.1.2 SEM與TEM分析......................................................169
6.3.1.3 XRD分析....................................................................175
6.3.1.4 BET分析.....................................................................181
6.3.2 以SBA-15為載體固定HRP酵素探討...............................195
6.3.2.1 探討不同含浸方法對於HRP酵素固定量的影響....195
6.3.2.2 探討吸附時間及pH值對於HRP酵素固定量的
影響............................................................................201
6.3.2.3 GA-/SBA-15(HRP)/PANI/Pt/Al2O3電極之性質
分析............................................................................208
6.3.2.4 GA-/SBA-15(HRP)/PANI/Pt/Al2O3電極之穩
定性探討....................................................................213
6.4 小結..........................................................................................215

第七章 探討過氧化氫感測過程中溶氧的影響................................216
7.1 研究目的...................................................................................216
7.2 實驗方法與程序.......................................................................217
7.2.1 溶氧感測性質測定............................................................217
7.3 實驗結果與討論.......................................................................218
7.3.1 探討過氧化氫感測過程中溶氧的影響............................218
7.3.1.1 Pt/Al2O3電極部份.......................................................218
7.3.1.2 PANI/Pt/Al2O3電極部份.............................................223
7.3.2 探討添加除氧劑之除氧效果及對於過氧化氫
感測的影響........................................................................227
7.4 小結..........................................................................................232

第八章 綜合討論................................................................................233
8.1 探討HRP酵素對於過氧化氫感測電流的貢獻......................233
8.2 比較擴孔劑添加量對於SBA-15吸附HRP酵素的影響…...239
8.3 探討HRP酵素是否固定於SBA-15孔洞中............................243
8.4 本研究中自製之過氧化氫感測電極的感測性質並
與文獻比較..............................................................................246

第九章 結論與建議............................................................................249

參考文獻................................................................................................252

個人簡歷................................................................................................264
周筱惇 (2007),探討影響HRP於聚苯胺電極固定化之因素,東海大學化學工程研究所碩士論文
Aburto, J., Ayala, M., Bustos-Jaimes, I., Montiel, C., Terres, E., Dominguez, J. M., and Torres, E. (2005). "Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials." Microporous and Mesoporous Materials, 83(1-3), 193-200.
Ahuja, T., Mir, I. A., Kumar, D., and Rajesh. (2007). "Biomolecular immobilization on conducting polymers for biosensing applications." Biomaterials, 28(5), 791-805.
Aizawa, M., Ikariyama, Y., and Kuno, H. (1984). "Photovoltaic Determination of Hydrogen-Peroxide with a Biophotodiode." Analytical Letters Part B-Clinical and Biochemical Analysis, 17(7), 555-564.
Arora, K., Sumana, G., Saxena, V., Gupta, R. K., Gupta, S. K., Yakhmi, J. V., Pandey, M. K., Chand, S., and Malhotra, B. D. (2007). "Improved performance of polyaniline-uricase biosensor." Analytica Chimica Acta, 594(1), 17-23.
Bai, Y., Yang, H., Yang, W. W., Li, Y. C., and Sun, C. Q. (2007). "Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction." Sensors and Actuators B-Chemical, 124(1), 179-186.
Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. L. (1992). "A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates." Journal of the American Chemical Society, 114(27), 10834-10843.
Bergveld, P. (1970). "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements." Ieee Transactions on Biomedical Engineering, BM17(1), 70-&.
Breen, A. P., and Murphy, J. A. (1995). "Reactions of Oxyl Radicals with DNA." Free Radical Biology and Medicine, 18(6), 1033-1077.
Budny, A., Novak, F., Plumere, N., Schetter, B., Speiser, B., Straub, D., Mayer, H. A., and Reginek, M. (2006). "Redox-active silica nanoparticles. Part 1. Electrochemistry and catalytic activity of spherical, nonporous silica particles with nanometric diameters and covalently bound redox-active modifications." Langmuir, 22(25), 10605-10611.
Cadet, J., Douki, T., Gasparutto, D., and Ravanat, J. L. (2003). "Oxidative damage to DNA: formation, measurement and biochemical features." Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 531(1-2), 5-23.
Castilho, T. J., Sotomayor, M. D. T., and Kubota, L. T. (2005). "Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples." Journal of Pharmaceutical and Biomedical Analysis, 37(4), 785-791.
Castillo-Ortega, M. M., Rodriguez, D. E., Encinas, J. C., Plascencia, M., Mendez-Velarde, F. A., and Olayo, R. (2002). "Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites." Sensors and Actuators B-Chemical, 85(1-2), 19-25.
Chan, H. S. O., Teo, M. Y. B., Khor, E., and Lim, C. N. (1989). "Thermal-Analysis of Conducting Polymers .1. Thermogravimetry of Acid-Doped Polyanilines." Journal of Thermal Analysis, 35(3), 765-774.
Chang, B. S., and Mahoney, R. R. (1995). "Enzyme Thermostabilization by Bovine Serum-Albumin and Other Proteins - Evidence for Hydrophobic Interactions." Biotechnology and Applied Biochemistry, 22, 203-214.
Chen, C. C., and Gu, Y. S. (2008). "Enhancing the sensitivity and stability of HRP/PANI/Pt electrode by implanted bovine serum albumin." Biosensors & Bioelectronics, 23(6), 765-770.
Chen, J., Yan, F., Dai, Z., and Ju, H. X. (2005). "Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase." Biosensors & Bioelectronics, 21(2), 330-336.
Cho, W. J., and Huang, H. J. (1998). "An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode." Analytical Chemistry, 70(18), 3946-3951.
Corma, A. (1997). "From microporous to mesoporous molecular sieve materials and their use in catalysis." Chemical Reviews, 97(6), 2373-2419.
Cosnier, S. (1999). "Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review." Biosensors & Bioelectronics, 14(5), 443-456.
Cosnier, S., and Popescu, I. C. (1996). "Poly(amphiphilic pyrrole)-tyrosinase-peroxidase electrode for amplified flow injection-amperometric detection of phenol." Analytica Chimica Acta, 319(1-2), 145-151.
Croissant, M. J., Napporn, T., Leger, J. M., and Lamy, C. (1998). "Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes." Electrochimica Acta, 43(16-17), 2447-2457.
Dai, Z. H., Bao, H. C., Yang, X. D., and Ju, H. X. (2008). "A bienzyme channeling glucose sensor with a wide concentration range based on co-entrapment of enzymes in SBA-15 mesopores." Biosensors & Bioelectronics, 23(7), 1070-1076.
Dai, Z. H., Liu, S. Q., Ju, H. X., and Chen, H. Y. (2004). "Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix." Biosensors & Bioelectronics, 19(8), 861-867.
Dai, Z. H., Ni, J., Huang, X. H., Lu, G. F., and Bao, J. C. (2007). "Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix." Bioelectrochemistry, 70(2), 250-256.
Dalas, E., Sakkopoulos, S., and Vitoratos, E. (2000). "Thermal degradation of the electrical conductivity in polyaniline and polypyrrole composites." Synthetic Metals, 114(3), 365-368.
Demmano, G., Selegny, E., and Vincent, J. C. (1996). "Experimental procedure for a hydrogen peroxide assay based on the peroxidase-oxidase reaction." European Journal of Biochemistry, 238(3), 785-789.
Diaz, A. F., and Logan, J. A. (1980). "Electroactive Polyaniline Films." Journal of Electroanalytical Chemistry, 111(1), 111-114.
Diazdeleon, F., Klotz, K. L., and Lagrimini, L. M. (1993). "Nucleotide-Sequence of the Tobacco (Nicotiana-Tabacum) Anionic Peroxidase Gene." Plant Physiology, 101(3), 1117-1118.
Dong, S., and Kuwana, T. (1991). "Cobalt Porphyrin Nafion Film on Carbon Microarray Electrode to Monitor Oxygen for Enzyme Analysis of Glucose." Electroanalysis, 3(6), 485-491.
Eggenstein, C., Borchardt, M., Diekmann, C., Grundig, B., Dumschat, C., Cammann, K., Knoll, M., and Spener, F. (1999). "A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer." Biosensors & Bioelectronics, 14(1), 33-41.
Essa, H., Magner, E., Cooney, J., and Hodnett, B. K. (2007). "Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporous silicates." Journal of Molecular Catalysis B-Enzymatic, 49, 61-68.
Fan, C. H., Zhuang, Y., Li, G. X., Zhu, J. Q., and Zhu, D. X. (2000). "Direct electrochemistry and enhanced catalytic activity for hemoglobin in a sodium montmorillonite film." Electroanalysis, 12(14), 1156-1158.
Farr, S. B., and Kogoma, T. (1991). "Oxidative Stress Responses in Escherichia-Coli and Salmonella-Typhimurium." Microbiological Reviews, 55(4), 561-585.
Fattakhova-Rohlfing, D., Rathousky, J., Rohlfing, Y., Bartels, O., and Wark, M. (2005). "Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests." Langmuir, 21, 11320-11329.
Felix, F. S., Yamashita, M., and Angnes, L. (2006). "Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors." Biosensors & Bioelectronics, 21(12), 2283-2289.
Feng, J. J., Xu, J. J., and Chen, H. Y. (2007). "Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly." Biosensors & Bioelectronics, 22(8), 1618-1624.
Fernandes, K. F., Lima, C. S., Lopes, F. M., and Collins, C. H. (2005). "Hydrogen peroxide detection system consisting of chemically immobilised peroxidase and spectrometer." Process Biochemistry, 40(11), 3441-3445.
Fischer, P., and Heitbaum, J. (1980). "Mechanistic Aspects of Cathodic Oxygen Reduction." Journal of Electroanalytical Chemistry, 112(2), 231-238.
Fraga, C. G., Shigenaga, M. K., Park, J. W., Degan, P., and Ames, B. N. (1990). "Oxidative Damage to DNA During Aging - 8-Hydroxy-2'-Deoxyguanosine in Rat Organ DNA and Urine." Proceedings of the National Academy of Sciences of the United States of America, 87(12), 4533-4537.
Garcia, M. A. V., Blanco, P. T., and Ivaska, A. (1998). "A poly(o-aminophenol) modified electrode as an amperometric hydrogen peroxide biosensor." Electrochimica Acta, 43(23), 3533-3539.
Genies, E. M., and Lapkowski, M. (1987). "Spectroelectrochemical Study of Polyaniline Versus Potential in the Equilibrium State." Journal of Electroanalytical Chemistry, 220(1), 67-82.
Gerard, M., Chaubey, A., and Malhotra, B. D. (2002). "Application of conducting polymers to biosensors." Biosensors & Bioelectronics, 17(5), PII S0956-5663(01)00312-8.
Grases, F., Villacampa, A. I., Costa-Bauza, A., and Sohnel, O. (2000). "Uric acid calculi: types, etiology and mechanisms of formation." Clinica Chimica Acta, 302(1-2), 89-104.
Guimard, N. K., Gomez, N., and Schmidt, C. E. (2007). "Conducting polymers in biomedical engineering." Progress in Polymer Science, 32, 876-921.
Guo, S. J., Wen, D., Dong, S. J., and Wang, E. K. (2009). "Gold nanowire assembling architecture for H2O2 electrochemical sensor." Talanta, 77(4), 1510-1517.
Guo, Z. X., Li, L., and Shen, H. X. (1999). "Study and analytical application of bromopyrogallol red as a hydrogen donor substrate for peroxidase." Analytica Chimica Acta, 379(1-2), 63-68.
Halliwell, B., and Gutteridge, J. M. C. (1992). "Biologically Relevant Metal Ion-Dependent Hydroxyl Radical Generation - an Update." Febs Letters, 307(1), 108-112.
Han, Y. J., Watson, J. T., Stucky, G. D., and Butler, A. (2002). "Catalytic activity of mesoporous silicate-immobilized chloroperoxidase." Journal of Molecular Catalysis B-Enzymatic, 17(1), 1-8.
Heeger, A. J. (2001). "Semiconducting and metallic polymers: The fourth generation of polymeric materials." Journal of Physical Chemistry B, 105(36), 8475-8491.
Hudson, P. J. (1998). "Recombinant antibody fragments." Current Opinion in Biotechnology, 9(4), 395-402.
Hudson, S., Magner, E., Cooney, J., and Hodnett, B. K. (2005). "Methodology for the immobilization of enzymes onto mesoporous materials." Journal of Physical Chemistry B, 109(41), 19496-19506.
Ikeda, O., Ohtani, M., Yamaguchi, T., and Komura, A. (1998). "Direct electrochemistry of cytochrome c at a glassy carbon electrode covered with a microporous alumina membrane." Electrochimica Acta, 43(8), 833-839.
Jin, Z., Su, Y. X., and Duan, Y. X. (2001). "A novel method for polyaniline synthesis with the immobilized horseradish peroxidase enzyme." Synthetic Metals, 122(2), 237-242.
Kadnikova, E. N., and Kostic, N. M. (2002). "Oxidation of ABTS by hydrogen peroxide catalyzed by horseradish peroxidase encapsulated into sol-gel glass. Effects of glass matrix on reactivity." Journal of Molecular Catalysis B-Enzymatic, 18(1-3), 39-48.
Kafi, A. K. M., Wu, G., and Chen, A. (2008). "A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays." Biosensors & Bioelectronics, 24(4), 566-571.
Kalous, J., Brazdova, D., and Vytras, K. (1993). "Microdetermination of Sulfate and Organic Sulfur - Potentiometric Back-Titration Using Simple Coated-Wire Electrodes." Analytica Chimica Acta, 283(1), 645-649.
Kasprzak, K. S. (1991). "The Role of Oxidative Damage in Metal Carcinogenicity." Chemical Research in Toxicology, 4(6), 604-615.
Khudaish, E. A., and Al-Farsi, W. R. (2008). "A study of the electrochemical oxidation of hydrogen peroxide on a platinum rotating disk electrode in the presence of calcium ions using Michaelis-Menten kinetics and binding isotherm analysis." Electrochimica Acta, 53(12), 4302-4308.
Kim, J., Grate, J. W., and Wang, P. (2006). "Nanostructures for enzyme stabilization." Chemical Engineering Science, 61(3), 1017-1026.
Kobayashi, T., Yoneyama, H., and Tamura, H. (1984). "Polyaniline Film-Coated Electrodes as Electrochromic Display Devices." Journal of Electroanalytical Chemistry, 161(2), 419-423.
Kong, Q., Beel, J. A., and Lillehei, K. O. (2000). "A threshold concept for cancer therapy." Medical Hypotheses, 55(1), 29-35.
Kong, Y. T., Boopathi, M., and Shim, Y. B. (2003). "Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode." Biosensors & Bioelectronics, 19(3), 227-232.
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beck, J. S. (1992). "Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism." Nature, 359(6397), 710-712.
Kuge, N., Kohzuki, M., and Sato, T. (1999). "Relation between natriuresis and urinary excretion of hydrogen peroxide." Free Radical Research, 30(2), 119-123.
Laurinavicius, V., Kurtinaitiene, B., and Stankeviciute, R. (2008). "Behavior of PQQ glucose dehydrogenase on Prussian blue-modified carbon electrode." Electroanalysis, 20(13), 1391-1395.
Lee, C. H., Lang, J., Yen, C. W., Shih, P. C., Lin, T. S., and Mou, C. Y. (2005). "Enhancing stability and oxidation activity of cytochrome c by immobilization in the nanochannels of mesoporous aluminosilicates." Journal of Physical Chemistry B, 109(25), 12277-12286.
Lee, D., and Char, K. (2002). "Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites." Polymer Degradation and Stability, 75(3), 555-560.
Lei, C. H., and Deng, J. Q. (1996). "Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface." Analytical Chemistry, 68(19), 3344-3349.
Lei, C. H., Lisdat, F., Wollenberger, U., and Scheller, F. W. (1999). "Cytochrome c/clay-modified electrode." Electroanalysis, 11(4), 274-276.
Lei, C. X., Hu, S. Q., Gao, N., Shen, G. L., and Yu, R. Q. (2004). "An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode." Bioelectrochemistry, 65(1), 33-39.
Lettow, J. S., Han, Y. J., Schmidt-Winkel, P., Yang, P. D., Zhao, D. Y., Stucky, G. D., and Ying, J. Y. (2000). "Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas." Langmuir, 16(22), 8291-8295.
Li, G., Wang, Y., and Xu, H. (2007). "A hydrogen peroxide sensor prepared by electropolymerization of pyrrole based on screen-printed carbon paste electrodes." Sensors, 7(3), 239-250.
Liu, Y., Hu, L. M., and Yang, S. Q. (2008). "Amplification of bioelectrocatalytic signalling based on silver nanoparticles and DNA-derived horseradish peroxidase biosensors." Microchimica Acta, 160(3), 357-365.
Liu, Y., Jiang, Q. Y., Lu, S. Y., Zhang, Y., and Gu, H. Y. (2009). "Immobilization of Hemoglobin on the Gold Colloid Modified Pretreated Glassy Carbon Electrode for Preparing a Novel Hydrogen Peroxide Biosensor." Applied Biochemistry and Biotechnology, 152(3), 418-427.
Long, L. H., Evans, P. J., and Halliwell, B. (1999). "Hydrogen peroxide in human urine: Implications for antioxidant defense and redox regulation." Biochemical and Biophysical Research Communications, 262(3), 605-609.
Luo, Y. C., and Do, J. S. (2004). "Urea biosensor based on PANi(urease)-Nation (R)/Au composite electrode." Biosensors & Bioelectronics, 20(1), 15-23.
Macdiarmid, A. G., Chiang, J. C., Halpern, M., Huang, W. S., Mu, S. L., Somasiri, N. L. D., Wu, W. Q., and Yaniger, S. I. (1985). "Polyaniline - Interconversion of Metallic and Insulating Forms." Molecular Crystals and Liquid Crystals, 121(1-4), 173-180.
Makowski, W., and Kustrowski, P. (2007). "Probing pore structure of microporous and mesoporous molecular sieves by quasi-equilibrated temperature programmed desorption and adsorption of n-nonane." Microporous and Mesoporous Materials, 102(1-3), 283-289.
Malinauskas, A., Garjonyte, R., Mazeikiene, R., and Jureviciute, I. (2004). "Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review." Talanta, 64(1), 121-129.
Mathebe, N. G. R., Morrin, A., and Iwuoha, E. I. (2004). "Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor." Talanta, 64(1), 115-120.
Miao, X. M., Yuan, R., Chai, Y. Q., Shi, Y. T., and Yuan, Y. Y. (2008). "Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode." Journal of Electroanalytical Chemistry, 612(2), 157-163.
Mogharrab, N., and Ghourchian, H. (2005). "Anthraquinone 2-carboxylic acid as an electron shuttling mediator and attached electron relay for horseradish peroxidase." Electrochemistry Communications, 7(5), 466-471.
Morgan, C. L., Newman, D. J., and Price, C. P. (1996). "Immunosensors: Technology and opportunities in laboratory medicine." Clinical Chemistry, 42(2), 193-209.
Morrin, A., Guzman, A., Killard, A. J., Pingarron, J. M., and Smyth, M. R. (2003). "Characterisation of horseradish peroxidase immobilisation on an electrochemical biosensor by colorimetric and amperometric techniques." Biosensors & Bioelectronics, 18(5-6), 715-720.
Murray, R. W., Ewing, A. G., and Durst, R. A. (1987). "Chemically Modified Electrodes - Molecular Design for Electroanalysis." Analytical Chemistry, 59(5), A379-&.
Nakashima, K., Maki, K., Kawaguchi, S., Akiyama, S., Tsukamoto, Y., and Imai, K. (1991). "Peroxyoxalate Chemiluminescence Assay of Hydrogen-Peroxide and Glucose Using 2,4,6,8-Tetrathiomorpholinopyrimido[5,4-D]-Pyrimidine as a Fluorescent Component." Analytical Sciences, 7(5), 709-713.
Neoh, K. G., Kang, E. T., and Tan, K. L. (1990). "Pyrolysis and Thermal-Oxidation of Doped and Undoped Poly((Ortho-(Trimethylsilyl)Phenyl)Acetylene)." Polymer Degradation and Stability, 29(3), 279-290.
Newcombe, A. R., Cresswell, C., Davies, S., Pearce, F., O'Donovan, K., and Francis, R. (2006). "Evaluation of a biosensor assay to quantify polyclonal IgG in ovine serum used for the production of biotherapeutic antibody fragments." Process Biochemistry, 41(4), 842-847.
Oh, S. Y., Koh, H. C., Choi, J. W., Rhee, H. W., and Kim, H. S. (1997). "Preparation and properties of electrically conductive polyaniline-polystyrene composites by in-situ polymerization and blending." Polymer Journal, 29(5), 404-409.
Pemberton, R. M., Xu, J., Pittson, R., Biddle, N., Drago, G. A., Jackson, S. K., and Hart, J. P. (2009). "Application of screen-printed microband biosensors to end-point measurements of glucose and cell numbers in HepG2 cell culture." Analytical Biochemistry, 385(2), 334-341.
Pielichowski, K. (1997). "Kinetic analysis of the thermal decomposition of polyaniline." Solid State Ionics, 104(1-2), 123-132.
Rahman, A., Park, D. S., and Shim, Y. B. (2004). "A performance comparison of choline biosensors: anodic or cathodic detections of H2O2 generated by enzyme immobilized on a conducting polymer." Biosensors & Bioelectronics, 19(12), 1565-1571.
Ravikovitch, P. I., and Neimark, A. V. (2001). "Characterization of nanoporous materials from adsorption and desorption isotherms." Colloids and Surfaces a-Physicochemical and Engineering Aspects, 187, 11-21.
Razola, S. S., Ruiz, B. L., Diez, N. M., Mark, H. B., and Kauffmann, J. M. (2002). "Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode." Biosensors & Bioelectronics, 17(11-12), 921-928.
Rezaei-Zarchi, S., Saboury, A. A., and Javed, A. (2008). "Electrochemical study of Horseradish peroxidase using the nanosilver-modified graphite electrode and its application to hydrogen peroxide biosensor." Journal of New Materials for Electrochemical Systems, 11(3), 199-203.
Ruan, C. M., and Li, Y. B. (2001). "Detection of zeptomolar concentrations of alkaline phosphatase based on a tyrosinase and horse-radish peroxidase bienzyme biosensor." Talanta, 54(6), 1095-1103.
Ruzgas, T., Csoregi, E., Emneus, J., Gorton, L., and MarkoVarga, G. (1996). "Peroxidase-modified electrodes: Fundamentals and application." Analytica Chimica Acta, 330(2-3), 123-138.
Ryan, B. J., Carolan, N., and O'Fagain, C. (2006). "Horseradish and soybean peroxidases: comparable tools for alternative niches?" Trends in Biotechnology, 24(8), 355-363.
Sallez, Y., Bianco, P., and Lojou, E. (2000). "Electrochemical behavior of c-type cytochromes at clay-modified carbon electrodes: a model for the interaction between proteins and soils." Journal of Electroanalytical Chemistry, 493(1-2), 37-49.
Saxena, V., and Malhotra, B. D. (2003). "Prospects of conducting polymers in molecular electronics." Current Applied Physics, 3(2-3), 293-305.
Schreck, R., Albermann, K., and Baeuerle, P. A. (1992). "Nuclear Factor Kappa-B - an Oxidative Stress-Responsive Transcription Factor of Eukaryotic Cells (a Review)." Free Radical Research Communications, 17(4), 221-237.
Scouten, W. H., Luong, J. H. T., and Brown, R. S. (1995). "Enzyme or Protein Immobilization Techniques for Applications in Biosensor Design." Trends in Biotechnology, 13(5), 178-185.
Shiomori, K., Ebuchi, N., Kawano, Y., Kuboi, R., and Komasawa, I. (1998). "Extraction characteristic of bovine serum albumin using sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles." Journal of Fermentation and Bioengineering, 86(6), 581-587.
Shirakawa, H., Louis, E. J., Macdiarmid, A. G., Chiang, C. K., and Heeger, A. J. (1977). "Synthesis of Electrically Conducting Organic Polymers - Halogen Derivatives of Polyacetylene, (Ch)X." Journal of the Chemical Society-Chemical Communications(16), 578-580.
Shu, H. C., and Wu, N. P. (2001). "A chemically modified carbon paste electrode with D-lactate dehydrogenase and alanine aminotranferase enzyme sequences for D-lactic acid analysis." Talanta, 54(2), 361-368.
Singh, S., Solanki, P. R., Pandey, M. K., and Malhotra, B. D. (2006). "Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films." Sensors and Actuators B-Chemical, 115(1), 534-541.
Smith, A. T., and Veitch, N. C. (1998). "Substrate binding and catalysis in heme peroxidases." Current Opinion in Chemical Biology, 2(2), 269-278.
Sonezaki, S., Yagi, S., Ogawa, E., and Kondo, A. (2000). "Analysis of the interaction between monoclonal antibodies and human hemoglobin (native and cross-linked) using a surface plasmon resonance (SPR) biosensor." Journal of Immunological Methods, 238(1-2), 99-106.
Song, Y. H., Cui, K., Wang, L., and Chen, S. H. (2009). "The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor." Nanotechnology, 20(10).
Sun, Y. X., Zhang, H. T., Huang, S. W., and Wang, S. F. (2007). "Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film." Sensors and Actuators B-Chemical, 124(2), 494-500.
Sung, J. H., Ko, H. J., and Park, T. H. (2006). "Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli." Biosensors & Bioelectronics, 21(10), 1981-1986.
Sunil, K., and Narayana, B. (2008). "Spectrophotometric determination of hydrogen peroxide in water and cream samples." Bulletin of Environmental Contamination and Toxicology, 81(4), 422-426.
Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., and Inagaki, S. (2001). "Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent." Microporous and Mesoporous Materials, 44, 755-762.
Tang, J. S., Jing, X. B., Wang, B. C., and Wang, F. S. (1988). "Infrared-Spectra of Soluble Polyaniline." Synthetic Metals, 24(3), 231-238.
Tian, F. M., and Zhu, G. Y. (2002). "Bienzymatic amperometric biosensor for glucose based on polypyrrole/ceramic carbon as electrode material." Analytica Chimica Acta, 451(2), 251-258.
Trchova, M., Sedenkova, I., and Stejskal, J. (2005). "In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerization." Synthetic Metals, 154(1-3), 1-4.
Trchova, M., Sedenkova, I., Tobolkova, E., and Stejskal, J. (2004). "FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films." Polymer Degradation and Stability, 86(1), 179-185.
Tsaprailis, G., Chan, D. W. S., and English, A. M. (1998). "Conformational states in denaturants of cytochrome c and horseradish peroxidases examined by fluorescence and circular dichroism." Biochemistry, 37(7), 2004-2016.
Tunc, S., Angellier, H., Cahyana, Y., Chalier, P., Gontard, N., and Gastaldi, E. (2007). "Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting." Journal of Membrane Science, 289(1-2), 159-168.
Vamvakaki, V., and Chaniotakis, N. A. (2007). "Immobilization of enzymes into nanocavities for the improvement of biosensor stability." Biosensors & Bioelectronics, 22(11), 2650-2655.
Varma, S. D. (1989). "Radioisotopic Determination of Subnanomolar Amounts of Peroxide." Free Radical Research Communications, 5(6), 359-368.
Varma, S. D., and Devamanoharan, P. S. (1991). "Hydrogen-Peroxide in Human Blood." Free Radical Research Communications, 14(2), 125-131.
Veitch, N. C. (2004). "Horseradish peroxidase: a modern view of a classic enzyme." Phytochemistry, 65(3), 249-259.
Viswanathan, S., and Ho, J. A. A. (2007). "Dual electrochemical determination of glucose and insulin using enzyme and ferrocene microcapsules." Biosensors & Bioelectronics, 22(6), 1147-1153.
Vitoratos, E., Sakkopoulos, S., Dalas, E., Malkaj, P., and Anestis, C. (2007). "DC conductivity and thermal aging of conducting zeolite/polyaniline and zeolite/polypyrrole blends." Current Applied Physics, 7(5), 578-581.
Walcarius, A. (2005). "Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials." Comptes Rendus Chimie, 8(3-4), 693-712.
Wang, J. W., Wang, L. P., Di, J. W., and Tu, Y. F. (2009). "Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor." Talanta, 77(4), 1454-1459.
Wanka, G., Hoffmann, H., and Ulbricht, W. (1994). "Phase-Diagrams and Aggregation Behavior of Poly(Oxyethylene)-Poly(Oxypropylene)-Poly(Oxyethylene) Triblock Copolymers in Aqueous-Solutions." Macromolecules, 27(15), 4145-4159.
Wei, Y., and Hsueh, K. F. (1989). "Thermal-Analysis of Chemically Synthesized Polyaniline and Effects of Thermal Aging on Conductivity." Journal of Polymer Science Part a-Polymer Chemistry, 27(13), 4351-4363.
Wu, Y. C., Thangamuthu, R., and Chen, S. M. (2009). "A Highly Selective Amperometric Hydrogen Peroxide Sensor Based on Silicomolybdate-Doped-Glutaraldehyde-Cross-Linked Poly-L-Lysine Film Modified Glassy Carbon Electrode." Electroanalysis, 21(2), 210-214.
Xian, Y. Z., Hu, Y., Liu, F., Xian, Y., Wang, H. T., and Jin, L. T. (2006). "Glucose biosensor based on Au nanoparticles-conductive polyaniline nanocomposite." Biosensors & Bioelectronics, 21(10), 1996-2000.
Xiang, C., Zou, Y., Sun, L. X., and Xu, F. (2009). "Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite." Sensors and Actuators B-Chemical, 136(1), 158-162.
Xiao, Y., Ju, H. X., and Chen, H. Y. (1999). "Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer." Analytica Chimica Acta, 391(1), 73-82.
Xiao, Y., Ju, H. X., and Chen, H. Y. (2000). "Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode." Analytical Biochemistry, 278(1), 22-28.
Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F., and Willner, I. (2003). ""Plugging into enzymes": Nanowiring of redox enzymes by a gold nanoparticle." Science, 299(5614), 1877-1881.
Yabuki, S., and Fujii, S. (2009). "Hydrogen peroxide biosensor based on a polyion complex membrane containing peroxidase and toluidine blue, and its application to the fabrication of a glucose sensor." Microchimica Acta, 164(1-2), 173-176.
Yang, J. M., Bell, J., Huang, Y., Tirado, M., Thomas, D., Forster, A. H., Haigis, R. W., Swanson, P. D., Wallace, R. B., Martinsons, B., and Krihak, M. (2002). "An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays." Biosensors & Bioelectronics, 17(6-7), PII S0956-5663(02)00023-4.
Yang, Y. F., and Mu, S. L. (1997). "Bioelectrochemical responses of the polyaniline horseradish peroxidase electrodes." Journal of Electroanalytical Chemistry, 432(1-2), 71-78.
Yiu, H. H. P., Wright, P. A., and Botting, N. P. (2001a). "Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces." Journal of Molecular Catalysis B-Enzymatic, 15(1-3), 81-92.
Yiu, H. H. P., Wright, P. A., and Botting, N. P. (2001b). "Enzyme immobilisation using siliceous mesoporous molecular sieves." Microporous and Mesoporous Materials, 44, 763-768.
Yoon, H., Jung, B. S., and Lee, H. (1991). "Correlation between Electrical-Conductivity, Thermal-Conductivity, and Esr Intensity of Polyaniline." Synthetic Metals, 41(1-2), 699-702.
Yu, J. J., Ma, J. R., Zhao, F. Q., and Zeng, B. Z. (2007). "Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3." Electrochimica Acta, 53(4), 1995-2001.
Zhang, J. D., Chi, Q. J., Dong, S. J., and Wang, E. K. (1996). "In situ electrochemical scanning tunnelling microscopy investigation of structure for horseradish peroxidase and its electrocatalytic property." Bioelectrochemistry and Bioenergetics, 39(2), 267-274.
Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson, G. H., Chmelka, B. F., and Stucky, G. D. (1998). "Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores." Science, 279(5350), 548-552.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊