跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/19 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱容賢
研究生(外文):Rong-Shian Chu
論文名稱:以無電鍍法研製銅密封鍍層光纖
論文名稱(外文):Hermetically Copper-Coated Optical Fibers Prepared by Electroless Plating Method
指導教授:薛顯宗林昆明
指導教授(外文):Sham-Tsong ShiueKM Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:68
中文關鍵詞:密封鍍層光纖無電鍍
外文關鍵詞:hermetically coatingsoptical fiberelectroless platingcopper
相關次數:
  • 被引用被引用:1
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以無電鍍銅法製備銅密封鍍層光纖。無電鍍銅鍍液成份包含硫酸銅、甲醛、氫氧化鈉、乙二胺四乙酸、亞鐵氰化鉀及2,2'-聯吡啶。實驗製程條件包含:改變鍍液中的甲醛含量以及控制析鍍時間等,並以光學顯微鏡、掃描式電子顯微鏡與原子力顯微鏡,分別觀察銅鍍層光纖的表面狀態、鍍層的膜厚及表面粗度。由光學顯微鏡觀察得知當甲醛含量為 15 mL/L、起始pH值為 12.4 與析鍍溫度為 70 °C 時,析鍍的銅密封鍍層光纖有最平整的表面。於此製程條件下更改析鍍時間,分別製備出膜厚為 41、62、89、127、154、165、206 及 251 nm 的銅密封鍍層光纖。經由原子力顯微鏡的量測得知,當鍍層厚度為 89 nm 時,有最低的表面粗度,其平均粗度 Ra 為 2.78 nm。經由拉伸試驗的量測得知:當鍍層厚度為 89 nm 時,銅密封鍍層光纖有最大的拉伸強度,為 372 MPa 將銅鍍層光纖浸入液態氮一天後,經由光學顯微鏡觀察熱應力誘發的裂孔,發現鍍層厚度為 62 nm 時,銅鍍層光纖表面有最少的裂孔。
In this work, the hermetically copper-coated optical fibers were prepared by electroless plating method. The bath composition of electroless copper includes copper sulfate, formaldehyde, sodium hydroxide, ethylene diamine tetraacetic acid, potassium ferrocyanide and 2,2’-bipyridine. The experimental process includes: changing the concentration of formaldehyde and controlling the plating time. The surface appearance that film thickness and surface roughness of copper coatings were investigated using the optical microscope (OM), scanning electron microscope (SEM) and atomic force microscope (AFM), respectively. The OM observation shows that if the concentration of formaldehyde is 15 mL/L, the initial pH value is 12.4 and the plating temperature is 70°C, the hermetically copper-coated optical fiber has the best smooth surface. Using the above experimental conditions, the copper coatings in a variety of thickness were uniformly deposited on the glass fiber surface by controlling the plating time, and the coating thicknesses of 41, 62, 89, 127, 154, 165, 206 and 251 nm were obtained. The AFM measurement revealed that the copper film thickness of 89 nm has the lowest surface roughness (Ra at 2.78 nm). The copper-coated optical fibers resulted in a maximum tensile strength (372 MPa) as the thickness of Cu-deposits at 89 nm. Optical microscope was used to examine the thermal stress induced voids on the surface of copper coatings after the copper-coated optical fibers immersed in the liquid nitrogen for one day. A minimum number of stress voids was induced on the surface for the copper coatings at 62 nm.
中文摘要 …………………………………………………………… Ⅰ
Abstract ……………………………………………………………… Ⅱ
總 目 錄 ……………………………………………………………… Ⅲ
圖 目 錄 ……………………………………………………………… Ⅵ
表 目 錄 ……………………………………………………………… Ⅸ
第一章 緒論 ………………………………………………………… 1
第二章 實驗原理 …………………………………………………… 11
2. 1 無電鍍 ………………………………………………………… 11
2. 2 無電鍍銅製程之發展 ………………………………………… 11
2. 3 無電鍍銅製程之特性 ………………………………………… 12
2. 4 無電鍍銅製程之前處理 ……………………………………… 12
2. 5 無電鍍銅鍍浴之組成與特性 ………………………………… 13
2. 6 無電鍍銅之化學反應式與反應機制 ………………………… 18
2. 6. 1 化學反應式 ………………………………………………… 18
2. 6. 2 反應機制 …………………………………………………… 19
2. 7 近年來無電鍍銅的發展及應用 ……………………………… 21
2. 8 無電鍍銅於深次微米領域的應用 …………………………… 21
第三章 實驗流程 …………………………………………………… 22
3. 1 試片準備 ……………………………………………………… 23
3. 2 玻璃光纖前處理 ……………………………………………… 23
3. 2. 1 敏化 ………………………………………………………… 23
3. 2. 2 活化 ………………………………………………………… 24
3. 3 銅鍍層光纖製備 ……………………………………………… 25
3. 3. 1 製程條件 …………………………………………………… 26
3. 3. 2 製程條件(一):改變甲醛含量 …………………………… 27
3. 3. 3 製程條件(二):改變析鍍時間 …………………………… 27
3. 4 表面型態觀察 ………………………………………………… 27
3. 5 表面粗度量測 ………………………………………………… 28
3. 6 鍍層結構分析 ………………………………………………… 30
3. 7 拉伸強度量測 ………………………………………………… 31
3. 8 低溫環境試驗 ………………………………………………… 32
第四章 結果與討論 ………………………………………………… 34
4. 1 甲醛濃度對於表面型態之影響 ……………………………… 34
4. 2 銅鍍層厚度對於銅鍍層表面型態之影響 …………………… 41
4. 3 銅鍍層厚度對於表面粗度之影響 …………………………… 43
4. 4 銅鍍層厚度對於銅鍍層結構之影響 ………………………… 46
4. 5 銅鍍層厚度對於拉伸強度之影響 …………………………… 47
4. 6 銅鍍層厚度對於溫變之影響 ………………………………… 49
4. 7 銅鍍層厚度對於機械應力及熱應力之影響 ………………… 52
第五章 結論 ………………………………………………………… 58
參考文獻 …………………………………………………………… 60
誌 謝 ……………………………………………………………… 67
作者簡介 …………………………………………………………… 68
[1]K. C. Kao and G. A. Hockham, “Dielectric-fiber Surface Wave-guides for Optical Frequencies”, Proc. IEE, Vol. 133, pp. 1151. (1966)
[2]W. A. Gambling, “The Rise and Rise of Optical Fibers”, IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, No. 6, pp. 1084. (2000)
[3]Gred Keiser, “Optical Fiber Communication”, 2nd Edition, McGraw-Hill, New York. (1991)
[4]K. C. Kao, “Optical Fiber System: Technology, Design, and Applications”, McGraw-Hill, New York. (1982)
[5]吳曜東, “光纖原理與應用”, 全華科技圖書公司. (1997)
[6]龔祖德, “光纖通訊技術”, 全華科技圖書公司. (1997)
[7]P. C. P. Bouten and G. de With, “Crack Nucleation at The Surface of Stressed Fibers”, Journal of Applied Physics, Vol. 64, No. 8, pp. 3890. (1988)
[8]Akira Iino, Masahide Kuwabara, and Kunio Kokura, “Mechanisms of Hydrogen-induced Losses in Silica-based Optical Fibers”, Journal of Lightwave Technology, Vol. 8, No. 11, pp. 1675. (1990)
[9]Janet L. (Armstrong) Mrotek, M. John Matthewson, and Charles R. Kurkjian, “Diffusion of Moisture Through Optical Fiber Coatings”, Journal of Lightwave Technology, Vol. 19, No. 7, pp. 988. (2001)
[10]Allen H. Cherin, “An Introduction to Optical Fibers”, McGraw-Hill, New York. (1983)
[11]汪建民, “陶瓷技術手冊(下)”, 中華民國粉末冶金協會, pp. 677. (1994)
[12]Charles R. Kurkjian, John T. Krause, and M. John Mattewson, “Strength and Fatigue of Silica Optical Fibers”, Journal of Lightwave Technology, Vol. 7, No. 9, pp. 1360. (1989)
[13]M. M. Bubnov, E. M. Dianov, and S. L. Semjonov, “Maximum Value of Fatigue Parameter n for Hermetically Coated Silica Glass Fibers”, Tech. Dig. Optical Fiber Commun. Conf., paper ThF2. (1992)
[14]K. E. Lu, G. S. Glaesemann, R. V. Vandewoestine, and G. Kar, “Recent Development in Hermetically Coated Optical Fiber”, Journal of Lightwave Technology, Vol. 6, No. 2, pp. 240. (1988)
[15]S. Aisenberg, “Properties and Applications of Diamondlike Carbon Films”, Journal of Vacuum and Science Technology A, Vol. 2, No. 2, pp. 369. (1984)
[16]John P. Powers, “An Introduction to Fiber Optic Systems”, Aksen Associates, Boston. (1993)
[17]Miroslav Sedlar and Ladislav Pust, “Preparation of Cobalt Doped Nickel Ferrite Thin Films on Optical Fibers by Dip-coating Technique”, Ceramics International, Vol. 21, pp. 21. (1995)
[18]Nobuyuki Yoshizawa, Hidenobu Tada, and Yutaka Katsuyama, “Strength Improvement and Fusion Splicing for Carbon-coated Optical Fiber”, Journal of Lightwave Technology, Vol. 9, No. 4, pp. 417. (1991)
[19]Y. Katsuyama, N. Yoshizawa, and T. Yashiro, “Field Evaluation Result on Hermetically Coated Optical Fiber Cables for Practical Application”, Journal of Lightwave Technology, Vol. 9, pp. 1041. (1991)
[20]D. P. Dowling, K. Donnelly, T. P. O'Brien, A. O'Leary, T. C. Kelly, and W. Neuberger, “Application of Diamond-like Carbon Films as Hermetic Coatings on Optical Fibers”, Diamond and Related Materials, Vol. 5, pp. 492. (1996)
[21]Daryl Inniss and John Krause, “Hermetic Splice over Coating”, Tech. Dig. Optical Fiber Commun. Conf., paper ThG4. (1991)
[22]N. Yoshizawa and Y. Katsuyama, “High-strength Carbon-coated Optical Fiber”, Electronics Letters, Vol. 25, No. 21, pp. 1429. (1989)
[23]P. J. Lemaire, K. S. Kranz, K. L. Walker, R. G. Huff, and F. C. Dimarcello, “Hydrogen Permeation in Optical Fibers with Hermetic Carbon Coatings”, Electronics Letters, Vol. 24, No. 21, pp. 1323. (1988)
[24]Christian R. Wüthrich, Claude A. P. Muller, Glen R. Fox, and Hans G. Limberger, “High Modulation Efficiency Using Optical Fiber Coated with ZnO Piezoelectric Actuator”, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, June 16-19. (1997)
[25]T. Nozawa, D. Tanaka, A. Wada, and R. Yamauchi, “Novel Metal-coated Solderable Optical Fibers”, Tech. Dig. Optical Fiber Commun. Conf., Paper ThF3. (1992)
[26]D. R. Biswas, “Optical Fiber Coatings of Biomedical Applications”, Optical Engineerings, Vol. 31, No. 7, pp. 1400. (1992)
[27]D. L. Griscom, K. M. Golant, A. L. Tomashuk, D. V. Pavlov, and Yu. A. Tarabrin, “γ-radiation Resistance of Aluminum-coated All-silica Optical Fibers Fabricated Using Different Type of Silica in The Core”, Applied Physics Letter, Vol. 69, pp. 322. (1996)
[28]Vasken Hagopian, “Radiation Damage of Quartz Fibers”, Nuclear Physics B, Vol. 78, pp. 635. (1999)
[29]H. S. Seo, U. C. Paek, K. Oh, and C. R. Kurkjian, “Melt Coating of Tin on Silica Optical Fiber”, Journal of Lightwave Technology, Vol. 16, No. 12, pp. 2355. (1998)
[30]Sara M. Chen, “Electroplated Hermetic Fiber”, Electronic Components and Tech. Conf., 48th , pp. 418. (1998)
[31]S. L. Semjonov, M. M. Bubnov, N. B. Kurinov, and A. G. Schebuniaev, “Stability of Mechanical Properties of Silica Based Optical Fibers under γ-radiation”, Radecs 97 4th European Conf.. (1998)
[32]神戶德藏著, 莊萬發譯, “無電解鍍金”, 復漢出版社印行. (1989)
[33]Y. Shacham-Diamand, Valery and M. Angyal, “Electroless Copper Deposition for ULSI”, Thin Solid Films, Vol. 262, pp. 93. (1995)
[34]Y. Shacham-Diamand and S. Lopatin, “Integrated Electroless Metallization for ULSI”, Electrochemica Acta, Vol. 44, pp. 3639. (1999)
[35]J. Dugasz and A. Szasz, “Factors Affecting the Adhesion of Electroless Coating”, Sur. Coating Technol., Vol. 58, pp. 57. (1993)

[36]N. Feldstein and J. A. Weiner, “Surface Characterization of Sensitized and Activated Teflon”, J. Electrochem. Soc., Vol. 120, No. 4, pp. 475. (1973)
[37]R. Sard, “The Nucleation, Growth, and Structure of Electroless Copper Deposits”, J. Electrochem. Soc., Vol. 117, No. 7, pp. 864. (1970)
[38]J. Shu, B. P. A. Grandjean, and S. Kaliaguine, “Effect of on Cu(OH)2 Electroless Copper Plating”, Ind. Eng. Chem. Res., Vol. 36, pp. 1632. (1997)
[39]方景禮, “電鍍添加劑總論(14)”, 表面處理工業雜誌, 153 期, pp. 137. (1995)
[40]A. Hung and K. M. Chen, “Mechanism of Hypophosphite-reduced Electroless Copper Plating”, J. Electrochem. Soc., Vol. 136, pp. 72. (1989)
[41]A. Hung and I. Ohno, “Electrochemical Study of Hypophosphite as Reducing Agent”, Plating and Surface Finishing, Vol. 137, pp. 918. (1990)
[42]A. Hung, “Electroless Copper Deposition with Hypophosphite as Reducing Agent”, Plating and Surface Finishing, Vol. 75, pp. 62. (1988)
[43]J. E. A. van den Meerakker, “On the Mechanism of Electroless Plating: I. Oxidation of Formaldehyde at Different Electrode Surface”, J. Appl. Electrochem., Vol. 11, pp. 395. (1981)

[44]J. E. A. van den Meerakker, “On the Mechanism of Electroless Plating: II. One Mechanism for Different Reductants”, J. Appl. Electrochem., Vol. 11, pp. 387. (1981)
[45]齊藤圈, “金屬表面技術”, 17 期, pp. 14. (1966)
[46]H. Honma and T. Kobayashi, “Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent”, J. Electrochem. Soc., Vol. 141, No. 3, pp. 730. (1994)
[47]Y. Shacham-Diamand, “Electroless Copper Deposition Using Glyoxylic Acid as Reducing Agent for Ultralarge Scale Integration Metallization”, Electrochemical and Solid-State Letters, Vol. 3, No. 6, pp. 279. (2000)
[48]M. Pounovic and R. Arndt, “The Effect of Some Additives on Electroless Copper Deposition”, J. Electrochem. Soc., Vol. 130, pp. 794. (1983)
[49]R. M. Lukes, Plating, Vol. 51, pp. 1066. (1964)
[50]V. V. Svirdow, “Electroless Metal Deposition Aqueous Solution”, Byelorussian University, Minsk, Russia. (1987)
[51]S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity”, 3rd ed., McGraw-Hill, New York. (1970)
[52]J. M. Gere, “Mechanics of Materials, Fifth ed., Brooks/Cole, a division of Thomson Learning”, Pacific Grove, CA. (2001)
[53]S. T. Shiue and W. H. Lee, “Thermal Stress in Carbon-coated Optical Fibers at Low Temperature”, J. Mater. Res. Vol. 12, No. 9, pp. 2493. (1997)
[54]S. T. Shiue, L. Y. Pan and H. H. Hsiao, “Design of Hermetically Metal-coated Optical Fibers to Simultaneously Minimize Thermally and Hydrostatic Pressure Induced Stresses”, Materials Chemistry and Physics, Vol. 78, pp. 518. (2003)
[55]E. A. Brandes, “Smithells Metals Reference Book”, 7th ed., Butterworths, Boston. (1983)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊