跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉淑琳
研究生(外文):Shu-Lin Liu
論文名稱:抗發炎藥物對減緩動脈粥狀變硬化及血管窄化的影響
論文名稱(外文):The Inhibitory Effects of Novel Anti-inflammatory Drugs on Atherosclerosis and Neointima Formation
指導教授:施桂月
指導教授(外文):Guey-Yueh Shi
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:88
中文關鍵詞:動脈粥狀變硬化血管窄化抗發炎藥物
外文關鍵詞:Anti-inflammatory DrugsAtherosclerosisRemodeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:623
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:1
動脈粥狀硬化疾病已成為許多開發國家中,主要罹病及死亡率的主因。動脈粥狀硬化疾病的主要致病機轉是血管壁上所引起的發炎反應。目前用於治療動脈粥狀硬化的藥物開發策略包括了老藥新用及研發全新的的藥劑。
降血脂藥物施德丁是目前最普遍使用於治療動脈粥狀硬化的藥物。現今的研究已論證施德丁(statin)除了降血脂外,亦具有其他的功能。然而目前少有研究顯示施德丁對於動脈粥狀硬化基因表現的影響,故我們利用餵食高膽固醇飼料的自發性動脈粥狀硬化缺陷小鼠模式(apoE-deficient mice)並給予施德丁的治療;以利研究施德丁對於動脈粥狀硬化基因表現的影響。我們以安捷倫(Agilent)公司的晶片進行寡核苷酸微陣列(oligonucleotide microarray) 研究美百樂鎮錠(pravastatin)對主動脈基因表現的影響。我們分析20281個小鼠基因,發現在美百樂鎮錠與對照組間,共有94個基因表現具顯著差異。其中有30個基因為高表現者;有60個基因為低表現者。我們期望此研究結果能提供研究施德丁相關分子機制的方向。
巨噬細胞在動脈粥狀硬化發炎反應中扮演重要的角色。鴉片類胜肽(opioid peptides)已被報導具有調節免疫反應的能力。納洛克松(naloxone)和右甲嗎喃(dextromethorphan)都是嗎啡(morphinan)的類似物;它們兩者都被發現可抑制神經系統中的巨噬細胞-微神經膠細胞(microglia)的活性。故探討納洛克松和右甲嗎喃可否經由降低巨噬細胞的發炎反應,進而減緩動脈粥狀硬化的形成。在我們的研究結果中發現納洛克松和右甲嗎喃;不論在細胞或動物體內都可顯著的降低發炎因子及過氧化物(superoxide)的生成。我們亦發現納洛克松和右甲嗎喃確實可減緩自發性動脈粥狀硬化缺陷小鼠及頸動脈結紮手術中動脈粥狀硬化的情況。納洛克松和右甲嗎喃是否是藉由抑制還原態的烟鹼醯胺腺嘌吟二核苷酸磷酸氧化酶(NADPH oxidase),而減緩動脈粥狀硬化的情形則須要更深入的研究。
Atherosclerotic vascular disease is the major cause of morbidity and mortality in many developed countries. Central to the pathogenesis of atherosclerosis is the inflammation in the arterial wall. New approaches to atherosclerosis-related diseases include novel uses of proven treatments and development of innovative agents.
Statins are the most commonly prescribed agents for the treatment of hypercholesterolemia because of their efficacy in reducing low-density lipoprotein (LDL). Recent experimental and clinical evidence indicates the cholesterol-independent effects of statins. However, the genetic expression pattern changes in atherosclerotic lesions produced by statins are rarely studied. Cholesterol-fed apolipoprotein (apo) E-deficient mice were examined for the treatment effect of statin on aortic gene expression. The aortic gene expression affected by pravastatin was identified by the oligonucleotide microarray technology with Agilent gene chips. Microarray analysis of the expression of 20,281 murine genes in the aortas between the two groups indicated that 94 genes were significantly regulated. Thirty genes were up-regulated and 64 genes were down-regulated. Our study might provide insight into the clinical benefits of chronic statin treatment.
Macrophages play an important role in the inflammatory process in atherosclerosis. Opioid peptides have been shown to modulate immunoresponse. Naloxone is a non-selective antagonist of the opioid receptors. Dextromethorphan (DM) is the d-isomer of the codeine analog levophanol, a dextrorotatory morphinan. It is widely used as a cough suppressant in cold and cough medications with a high safety profile. Both of them could inhibit activation of microglia, the resident macrophage in nervous systems. We investigated whether naloxone and DM could reduce macrophage activation and influence atherosclerotic lesion formation in mice. In our study, we found that naloxone and DM pretreatment significantly suppressed the production of proinflammatory factors and superoxide in macrophage and mice after stimulation. The novel anti-inflammatory effect of naloxone and DM reduced the spontaneous aortic atherosclerotic lesion formation in apoE-deficient mice and the carotid neointima formation in C57BL6 mice receiving carotid ligation. The study of naloxone and DM generate many new and exciting hypotheses to be tested in the future.
Abstract -------------------------------------------------------------------- 1
Abstract in Chinese---------------------------------------------------------- 3
Introduction
Ⅰ. Atherosclerosis-an inflammatory disease---------------------------------- 4
Ⅱ. The step of atherosclerosis---------------------------------------------- 4
Endothelial dysfunction: setting the stage for inflammation ------------ 4
Fatty streak and vulnerable plaque formation---------------------------- 6
Ⅲ. Oxidative stress in atherosclerosis --------------------------------------6
The oxidative modification hypothesis of atherosclerosis-----------------6
Reactive oxygen species (ROS) and the phagocytic NAD(P)H oxidase---------8
Ⅵ. Animal models of experimental atherosclerosis-----------------------------9
Gene targeting atherosclerotic mouse models-----------------------------10
Carotid Intima-media thickening mouse models----------------------------12
Ⅴ. New trends in anti-atherosclerotic drugs---------------------------------14
Cholesterol-lowering drugs----------------------------------------------14
Novel anti-inflammatory drugs-------------------------------------------17
Objection of the study-------------------------------------------------------19
Materials and Methods
I. Animal and animal diet----------------------------------------------------20
II. Preparation of drugs-----------------------------------------------------20
III. Methods-----------------------------------------------------------------21
1. Human acute monocytic leukemia cell culture-------------------------------21
2. Evaluation of cell viability----------------------------------------------21
3. Isolation of LDL and Cu2+-Induced oxidation of LDL------------------------22
4. Evaluation of pro-inflammatory factors in THP-1 cells---------------------22
5. Evaluation of superoxide in THP-1 cells-----------------------------------22
6. Evaluation of NADPH oxidase activity in THP-1 cells-----------------------23
7. Determination of serum lipid profiles-------------------------------------23
8. Evaluation of lipid deposition in aorta-----------------------------------24
9. Isolation of the aorta RNA------------------------------------------------24
10.Oligonucleotide expression arrays----------------------------------------25
11. Real-time quantitative PCR (RT-PCR) -------------------------------------25
12. Determination of TNF-α production in mice--------------------------------26
13. Determination of PMN infiltration index in the lung----------------------26
14. Determination of superoxide production in the PMN------------------------26
15. Determination of superoxide production in the aorta----------------------27
16. Measurement of aortic superoxide production with DHE---------------------27
17. Mouse vascular remodeling model -----------------------------------------28
18. Statistical analyses-----------------------------------------------------28

Results and Discussion
Chapter 1. The effect of statin on the aortic gene expression profiling
I. Results-------------------------------------------------------------------29
1.Serum cholesterol and aortic atherosclerotic lesion------------------------29
2.Oligonucleotide expression arrays and real-time quantitative RT-PCR -------29
II. Discussion---------------------------------------------------------------31

Chapter 2. A novel inhibitory effect of naloxone on macrophage activation and atherosclerosis formation in mice
I. Results-------------------------------------------------------------------35
1. Naloxone treatment reduces macrophage cytokine production-----------------35
2. Naloxone treatment reduces TNF-α and superoxide production in mice--------36
3. Naloxone treatment inhibits atherosclerosis and neointima Formation-------36
II. Discussion---------------------------------------------------------------38

Chapter 3. Dextromethorphan is a novel inhibitor of inflammation that reduces
atherosclerosis and neointima formation in mice
I. Results-------------------------------------------------------------------41
1. Dextromethorphan treatment reduces macrophage cytokine production---------41
2.Dextromethorphan treatment reduces macrophage superoxide production--------42
3.Dextromethorphan treatment reduces macrophage NADPH oxidase activity-------42
4.Dextromethorphan treatment reduces superoxide production in mice-----------43
5.Dextromethorphan treatment inhibits atherosclerosis and neointima formation-------------------------------------------------------------------------------43
II. Discussion---------------------------------------------------------------45
Conclusion of the study------------------------------------------------------48
References-------------------------------------------------------------------49
Tables-----------------------------------------------------------------------67
Figures----------------------------------------------------------------------70
Publication list-------------------------------------------------------------88
1.Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801-809.
2.Ross R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med. 1999;340:115-126.
3.Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-874.
4.Blake G J and Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89:763-771.
5.Libby P, Ridker PM and Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135-1143.
6.Verma S and Anderson TJ. Fundamentals of endothelial function for the clinical cardiologist. Circulation 2002;105:546-549.
7.Szmitko PE, Wang CH, Weisel RD, Almeida JR, Anderson TJ and Verma S. New Markers of Inflammation and Endothelial Cell Activation Part I. Circulation 2003; 108:1917-1923.
8.Kaplanski G, Marin V, Fabrigoule M, Boulay V, Benoliel AM, Bongrand P, Kaplanski S and Farnarier C. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood 1998; 92:1259-1267.
9.Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, Dhillon B and Mickle DA. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002;105:1890–1896.
10.Schonbeck U and Lippy P. CD40 signaling and plaque instability. Circ Res. 2001; 89: 1092-1103.
11.Chen M, Masaki T and Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002;95:89-100.
12.Boring L, Gosling J, Cleary M and Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894-897.
13.Porreca E, Di Febbo C, Reale M, Castellani ML, Baccante G, Barbacane R, Conti P, Cuccurullo F and Poggi A. Monocyte chemotactic protein 1 (MCP-1) is a mitogen for cultured rat vascular smooth muscle cells. J Vasc Res. 1997;34: 58-65.
14.Glagov S, Weisenberg E, Zarins CK, Stankunavicius R and Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-1375.
15. Galis ZS, Sukhova GK, Lark MW and Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994; 94: 2493-2503.
16. Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA and Fogelman AM. The yin and yang of oxidation in the development of the fatty streak: a review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 1996;16:831-842.
17. Parhami F, Fang ZT, Fogelman AM, Andalibi A, Territo MC and Berliner JA. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest 1993;92:471-478
18 Henriksen T, Mahoney EM and Steinberg D. Enhanced macrophage degradation of low density lipoproten previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci 1981; 78:6499-6503.
19. Quinn MT, Parthasarathy S and Steinberg D. Lvsophosphatidzrlcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 1988;85:2805-2809.
20. Frostegard J, Haegerstrand A, Gidlund M and Nilsson J. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis 1991; 90:119-126.
21. Cathcart MK, Morel DW and Chisolm GM III. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol 1985; 38:341-350.
22.Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D and Witztum JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A 1989; 86:1372-1376.
23. Keaney JF. Oxidative stress and the vascular wall: NADPH oxidases take center stage. Circulation 2005; 112: 2585-2858.
24. Singh U, Devaraj S and Jialal I. Vitamin E, oxidative stress and inflammation, Annu. Rev. Nutr. 2005; 25:151-174.
25. Madamanchi NR, Vendrov A and Runge MS. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2005; 25:29-38.
26. Jialal I. Evolving lipoprotein risk factors: lipoprotein(a) and oxidized low-density lipoprotein. Clin. Chem. 1998; 44:1827-1832.
27. Stocker R and Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 2001; 84:1381-1478.
28. Rubbo H, Tarpey M and Freeman BA. Nitric oxide and reactive oxygen species in vascular injury. Biochem Soc Symp. 1995; 61:33-45.
29. Aviram M, Rosenblat M, Etzioni A and Levy R. Activation of NADPH
oxidase required for macrophage-mediated oxidation of low-density. lipoprotein. Metabolism. 1996;45:1069 -1079.
30. Hiraoka W, Vazquez N, Nieves-Neira W, Chanock SJ and Pommier Y. Role
of oxygen radicals generated by NADPH oxidase in apoptosis induced in
human leukemia cells. J Clin Invest. 1998;102:1961-1968.
31. Baas AS and Berk BC . Differential activation of mitogen-activated protein
kinases by H2O2 and O2 in vascular smooth muscle cells. Circ Res. 1995; 77:29 -36.
32. Singh U and Jialal I. Oxidative stress and atherosclerosis. Pathophysiology. 2006.
33. Jawien J, Nastalek P and Korbut R. Mouse models of experimental atherosclerosis. J Physiol Pharmacol 2004; 55:503-517.
34. Drobnik J, Dabrowski R, Szczepanowska A, Giernat L and Lorenc J. Response of aorta connective tissue matrix to injury caused by vasopressin - induced hypertension or hypercholesterolemia. J Physiol Pharmacol 2000; 51: 521-533.
35. Rosenfeld ME, Tsukada T, Chait A, Bierman EL, Gown AM and Ross R. Fatty streak expansion and maturation in Watanabe heritable hyperlipidemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 1987;7: 24-34.
36. Aaggiotto A, and Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 1984; 4:341-356.
37. Paigen B, Morrow A, Brandon C, Mitchell D, and Holmes P. Variation in susceptibility to atherosclerosis among inbtred strains of mice. Atherosclerosis 1985;57: 65-73.
38. Zhang SH, Reddick RL, Piedrahita JA and Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992; 258:468-471.
39. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE and Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993;92:883-893.
40. Plump A. Atherosclerosis and the mouse: a decade of experience. Ann Med. 1997;29:193-198.
41.Breslow JL. Mouse models of atherosclerosis. Science 1996;272:685-688.
42. Mahely RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240:622-630.
43. Beisiegel U. Receptors for triglyceride-rich lipoproteins and their role in lipoprotein metabolism. Curr Opin Lipidol. 1995;6:117-122.
44. Linton MF, Gish R, Hubl ST, Bütler E, Esquivel C, Bry WI, Boyles JK, Wardell MR and Young SG. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J Clin Invest. 1991;88:270-281.
45.Jawien J, Nastalek P and Korbut R. Mouse models of experimental atherosclerosis. J Physiol Pharmacol. 2004:55,503-517.
46. Daugherty A and Rateri DL.Development of experimental designs for atherosclerosis studies in mice. Methods 2005;36:129-138.
47. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, and Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E - deficient mice created by homologous recombination in ES cells. Cell 1992; 71:343-353.
48Merat S, Fruebis J, Sutphin M, Silvestre M and Reaven PD. Effect of aging on aortic expression of the vascular cell adhesion molecule-1 and atherosclerosis in murine models of atherosclerosis. J Gerontol A Biol Sci Med Sci. 2000;55:B85-B94.
49Ishibashi S, Goldstein JL, Brown MS, Herz J and Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 1994;93:1885-1893.
50Curtiss LK and Edgington TS. Edgington. The biologic activity of the immunoregulatory lipoprotein, LDL-in, is independent of its free fatty acid content. J. Immunol. 1981;126:1382-1386.
51Schreyer SA, Vick C, Lystig TC, Mystkowski P and LeBoeuf RC. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am. J. Physiol. Endocrinol. Metab. 2002; 228: E207-E214.
52Jonasson, J. Holm, O. Skalli, G. Bondjers and Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 6:131-138.
53Roselaar SE, Kakkanathu PX and Daugherty A. Lymphocyte populations in atherosclerotic lesions of ApoE -/- and LDL receptor -/- mice: Decreasing density with disease progression. Arterioscler. Thromb. Vasc. Biol. 1996;16:1013-1018.
54karnicki K, Komorowicz E, Fass DN, Owen WG. and McBane RD 2nd. Influence of anatomical location on arterial thrombosis. Arterioscler Thromb Vasc Biol, 2002; 22:342 -347.
55Gomez JJ, Becker GJ, Rodriguez MM, Halgowich J and Leone J. The double‐tuck model: a new animal model of arterial thrombosis. J Vasc Interv Radiol, 1998; 9:633-638.
56Ritchie JL, Hansen DD, Johnson C, Vracko R and Auth DC. Combined mechanical and chemical thrombolysis in an experimental animal model: evaluation by angiography and angioscopy. Am Heart J, 1990;119:64-72.
57Golino, P. and Ambrosio, G. and Pascucci, I. Ragni, M. and Russolillo, E. and Chiariello, M. Experimental carotid stenosis and endothelial injury in the rabbit: an in vivo model to study intravascular platelet aggregation. Thromb Haemost, 1992;67:302-305.
58Roux S, Carteaux JP, Hess P, Falivene L and Clozel JP. Experimental carotid thrombosis in the guinea pig. Thromb Haemost, 1994:71:252-256.
59Burchenal JE, Deible CR, Deglau TE, Russell A J, Beckman EJ and Wagner WR. Polyethylene glycol diisocyanate decreases platelet deposition after balloon injury of rabbit femoral arteries. J Thromb Thrombolysis, 2002; 13:27-33.
60Chen C, Surowiec SM, Morsy AH and Ma, M. Intraperitoneal infusion of homocysteine increases intimal hyperplasia in balloon‐injured rat carotid arteries. Atherosclerosis, 2002:160 103-14.
61Wainwright CL, Miller AM and Wadsworth RM. Inflammation as a key event in the development of neointima following vascular balloon injury. Clin Exp Pharmacol Physiol, 2001; 28: 891-5.
62Cheung WM, D'Andrea MR, Andrade GP and Damiano BP. Altered vascular injury responses in mice deficient in protease‐activated receptor‐1. Arterioscler Thromb Vasc Biol, 1999; 19:3014-24.
63Lindner V, Fingerle J and Reidy M. A mouse model of arterial injury. Circ Res, 1993; 73:792-736.
64Napoli C, De Nigris F, Pignalosa O, Lerman A, Sica G, Fiorito C, Sica V, Chade A, Lerman LO. In vivo veritas: Thrombosis mechanisms in animal model. Scand of Clin Lab Invest 2006; 66:407-428.
65Tronc F, Wassef M, Esposito B, Henrion D, Glagov S and Tedgui A. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol. 1996; 16: 1256–1262.
66Korshunov VA and Berk BC. Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler Thromb Vasc Biol. 2003 ; 23 :2185-91.
67Ueno H, Kanellakis P, Agrotis A and Bobik A. Blood flow regulates the development of vascular hypertrophy, smooth muscle cell proliferation, and endothelial cell nitric oxide synthase in hypertension. Hypertension 2000; 36:89-96.
68Napoli C, Sica V, Pignalosa O and Nigris F. New trends in anti-atherosclerotic agents. Current Medicinal Chemistry. 2005;12:1755-1772.
69Endo A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res. 1992,33:1569-1582.
70Veillard NR and Mach F. Statins : the new aspirin? Cell. Mol. Life Sci. 2002;59: 1771-1786.
71Furberg CD. Natural statins and stroke risk. Circulation 1999;99;185-188.
72Larosa JC, He J and Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 1999; 282:2340-2346.
73Takemoto M and Liao JK. Pleiotropic effect of 3-Hydroxy-3-Methylglutaryl Coenzyme A reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001; 23 :1712-1719.
74Maron DJ, Fazio S and Linton MF. Current perspectives on statins. Circulation 2000; 101; 207-213.
75Olson MF, Ashoworth A and Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 1995;269:1270-1272.
76Hall A. Rho GTOases and the actin cytoskeleton. Science 1998; 279:509-514.
77Laufs U and Liao JK. Targeting Rho in cardiovascular disease. Circ Res. 2000; 87:526-528.
78Laufs U, Fata L, Plutzky J and Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998; 97:1129-1135.
79Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M and Gutierrez G. Stimulation of bone formation in vitro and in rodents by statins. Science 1999;286:1946-1949.
80Brouet A, Sonveaux P, Dessy C, Moniotte S, Balligand JL and Feron O. Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ. Res. 2001; 89: 866-873.
81Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC and Walsh K. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals, Nat. Med. 2000; 6:1004-1010.
82Hernandez PO, Perez SD, Navarro AJ, Sanchez PR, Hernandez G, Diaz C and Lamas S. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells, J. Clin. Invest. 1998;110: 2711–2719.
83Ichiki T, Takeda K, Tokunou T, Iino N, Egashira K, Shimokawa H, Hirano K, Kanaide H, and Takeshita A. Downregulation of angiotensin II type 1 receptor by hydrophobic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol. 2001,21: 1896-1901.
84Chung HK, Lee IK, Kang H, Such JM, Kim H, Park KC, Kim DW, Kim YK, Ro HK and Shong M. Statin inhibits interferon-gamma-induced expression of intercellular adhesion molecule-1 (ICAM-1) in vascular endothelial and smooth muscle cells, Exp. Mol. Med. 2002; 34:451–461.
85Rezaie MA, Prager GW, Bucek RA, Schernthaner GH, Maca T, Kress HG, Valent P, Binder BR, Minar E and Baghestanian M. Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients, Arterioscler. Thromb. Vasc. 2003; 23:397-403.
86Rasmussen LM, Hansen PR, Nabipour MT, Olesen P, Kristiansen MT and Ledet T. Diverse effects of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase on the expression of VCAM-1 and E-selectin in endothelial cells, Biochem. J. 2001; 360:363–370.
87Wagner AH, Gebauer M, Guldenzoph B and Hecker M. 3-hydroxy-3-
methylglutaryl coenzyme A reductase-independent inhibition of CD40 expression by atorvastatin in human endothelial cells. Arterioscler. Thromb. Vasc. 2002; 22:1784-1789.
88Weis M, Heeschen C, Glassford AJ and Cooke JP. Statins have biphasic effects on angiogenesis. Circulation 2002; 105: 739-745.
89Demier MF, Higgins PD, Gruber SB, Hawk E and Lippman SM. Ststins and cancer prevention. Cancer. 2005; 5:930-942.
90Welters ID, Menzebach A, Goumon Y, Langefeld TW, Teschemacher H, Hempelmann and Stefano GB. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and mu 3 opiate receptor-dependent mechanism. J Neuroimmunol 2000; 111: 139-145.
91Simkins CO, Ives N, Tate E, Johnson M. Naloxone inhibits superoxide release from human neutrophils. Life Sci 1985; 37: 1381-1386.
92Law WR and Ferguson JL. Naloxone alters organ perfusion during endotoxin shock in conscious rats. Am J Physiol 1988;255:H1106-1113.
93Xu T, Wang T and Han JS. Centrally acting endogenous hypotensive substances in rats subjected to endotoxic shock. Life Sci 1992;51:1817-1821.
94Liu B, Du L and Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 2000;293:607-617.
95Liu B and Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003;304:1-7.
96Liu Y, Qin L, Li G, Zhang W, An L, Liu B and Hong JS. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther. 2003;305:212-218.
97Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF, Zhang W, Hong JS and Liu B. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. FASEB J. 2004;18:589-591.
98Qin L, Block ML, Liu Y, Bienstock RJ, Pei Z, Zhang W, Wu X, Wilson B, Burka T and Hong JS. Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J. 2005;19:550-557.
99Wang CC, Lee YM, Wei HP, Chu CC and Yen MH. Dextromethorphan prevents circulatory failure in rats with endotoxemia. J Biomed Sci. 2004;11:739-747.
100 Li G, Liu Y, Tzeng NS, Cui G, Block ML, Wilson B, Qin L, Wang T, Liu B, Liu J and Hong JS. Protective effect of dextromethorphan against endotoxic shock in mice. Biochem Pharmacol. 2005;69:233-240
101Yanagitani Y, Rakugi H, Okamura A, Moriguchi K, Takiuchi S, Ohishi M, Suzuki K, Higaki J and Ogihara T. Angiotensin II type 1 receptor-mediated peroxide production in human macrophages. Hypertenaion.1999; 33:335-339.
102 van de Loosdrecht AA, Ossenkoppele GJ, Beelen RH, Broekhoven MG, van Hooff MH, Drager AM, Huijgens PC and Langenhuijsen MM. Maturation-
dependent susceptibility to monocyte-mediated cytotoxicity in acute myeloid leukemia. Leukemia. 1994;8:1392-1400.
103 Kuzuya M, Yamada K, Hayashi T, Funaki C, Naito M, Asai K and Kuzuya F. Role of lipoprotein-copper complex in copper catalyzed-peroxidation of low density lipoprotein. Biochem Biophys Acta 1992;1123:334-341.
104 Khadour FH, Panas D, Ferdinandy P, Schulze C, Csont T, Lalu MM, Wildhirt SM and Schulz R.Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am J Physiol Heart Circ Physiol 2002;283:H1108-1115.
105 Minakami R and Sumimotoa H.Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Int J Hematol. 2006;843:193-198.
106 Skatchkov MP, Sperling D and Hink U, Mulsch A, Harrison DG, Sindermann I, Meinertz T and Munzel T. Validation of lucigenin as a chemiluminescent probe to monitor vascular superoxide as well as basal vascular nitric oxide production. Biochem Biophys Res Comm. 1999;254:319-324.
107 Vendrov AE, Madamanchi NR, Hakim ZS, Rojas M and Runge MS. Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis. Circ Res. 2006;98(10):1254-1263. Ep
108 Miller FJ, Gutterman DD, Rios CD, Heistad DD and Davidson BL. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res. 1998;82:1298-1305.
109 Kumar A and Lindner V. Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol 1997;17: 2238-2244.
110 Pruitt KD, Tatusova T and Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005;33(Database issue):D501-504.
111.Nakashima Y, Plump AS, Raines EW, Breslow JL and Ross R. ApoE-deficient mice develop lesion of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994;14:133-40.
112. Morikawa S, Takabe W, Mataki C, Kanke T, Itoh T, Wada Y, Izumi A, Saito Y, Hamakubo T and Kodama T. The effect of statins on mRNA levels of genes related to inflammation, coagulation, and vascular constriction in HUVEC. J Atheroscler Thromb 2002;9:178-183.
113. Morikawa S, Takabe W, Mataki C, Wada Y, Izumi A, Saito Y, Hamakubo T, and Kodama T. Global analysis of RNA expression profile in human vascular cells treated with statins. J Atheroscler Thromb 2004;11:62-72.
114. Llaverias GV, Penuelas S, Vazquez-Carrera M, Sanchez RM, Laguna JC, Ciudad CJ and Alegret M. Atorvastatin reduces CD68, FABP4, and HBP expression in oxLDL-treated human macrophages. Biochem Biophys Res Commun 2004;318:265-274.
115. Kirsch C, Eckert GP and Mueller WE. Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem Pharmacol 2003;65:843-856.
116. Johnson-Anuna LN, Eckert GP, Keller JH, Igbavboa U, Franke C, Fechner T, Schubert-Zsilavecz M, Karas M, Muller WE and Wood WG. Chronic administration of statins alters multiple gene expression patterns in mouse cerebral cortex. J Pharmacol Exp Ther 2005;312:786-793.
117. Diaz-Zagoya JC, Asenjo-Barron JC, Cardenas-Vazquez R, Martinez F and Juarez-Oropeza MA. Comparative toxicity of high doses of vastatins currently used by clinicians, in CD-1 male mice fed with a hypercholesterolemic diet. Life Sci. 1999;65:947-956.
118. Goldstein JL and Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425-430.
119. Diomede L, Albani D, Sottocorno M, Donati MB, Bianchi M, Fruscella P and Salmona M. In vivo antiinflammatory effect of statins is mediated by nonsterol mevalonate products. Arterioscler Thromb Vasc Biol 2001;21:1327-1332.
120. Reddick RL, Zhang SH and Maeda N. Atherosclerosis in mice lacking ApoE: evaluation of lesional development and progression. Arterioscler Thromb 1994;14:141-7.
121. Jacobson JR, Dudek SM, Birukov KG, Ye SQ, Grigoryev DN, Girgis RE and Garcia JG. Cytoskeletal activation and altered gene expression in endothelial barrier regulation by simvastatin. Am J Respir Cell Mol Biol. 2004;30:662-670.
122. Wolozin B, Kellman W, Ruosseau P, Celesia GG and Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy 3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000;57:1439-1443.
123. Meske V, Albert F, Richter D, Schwarze J and Ohm TG. Blockade of HMG-CoA reductase activity causes changes in microtubule-stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer's disease. Eur J Neurosci. 2003;17:93-102.
124. Zhou J, Moroi K, Nishiyama M, Usui H, Seki N, Ishida J, Fukamizu A, and Kimura S. Characterization of RGS5 in regulation of G protein-coupled receptor signaling. Life Sci 2001;68:1457-169.
125.D'Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB and Dorn GW 2nd.. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 1997;94:8121-8126.
126.Geary RL, Wong JM, Rossini A, Schwartz SM and Adams LD. Expression profiling identifies 147 genes contributing to a unique primate neointimal smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2002;22:2010-2016.
127.Jackson EK, Koehler M, Mi Z, Dubey RK, Tofovic SP, Carcillo JA and Jones GS. Possible role of adenosine deaminase in vaso-occlusive diseases. J Hypertens 1996;14:19-29.
128. Levin ER, Gardner DG and Samson WK. Natriuretic peptides. N Engl J Med 1998;339:321-8.
129. Casco VH, Veinot JP, Kuroski de Bold ML, Masters RG, Stevenson MM and de Bold AJ. Natriuretic peptide system gene expression in human coronary arteries. J Histochem Cytochem 2002;50:799-809.
130. Kumar R, Cartledge WA, Lincoln TM and Pandey KN. Expression of guanylyl cyclase-A/atrial natriuretic peptide receptor block the activation of protein kinase C in vascular smooth muscle cells: role of cGMP and cGMP-dependent protein kinase. Hypertension 1997;29:414-4121.
131. 't Hoen PA, Van der Lans CA, Van Eck M, Bijsterbosch MK, Van Berkel TJ and Twisk J. Aorta of ApoE-deficient mice responds to atherogenic stimuli by a prelesional increase and subsequent decrease in the expression of antioxidant enzymes. Circ Res 2003;93:262-269.
132. Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, Bohm M and Nickenig G. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2002;22:300-305.
133. Greeneltch KM, Haudenschild CC, Keegan AD and Shi Y. The opioid antagonist naltrexone blocks acute endotoxic shock by inhibiting tumor necrosis factor-a production. Brain Behav Immun 2004;18:476-484.
134. Lin SL, Lee YM, Chang HY, Cheng YW and Yen MH. Effects of naltrexone on lipopolysaccharide-induced sepsis in rats. J Biomed Sci 2005;12:431-440.
135. Liu B, Du L and Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 2000;293:607-617.
136. Liu B and Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003;304:1-7.
137. Liu B, Jiang JW, Wilson BC, Du L, Yang SN, Wang JY, Wu GC, Cao XD and Hong JS. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide. J Pharmacol Exp Ther 2000;295:125-132.
138. Liao SL, Chen WY, Raung SL and Chen CJ. Neuroprotection of naloxone against ischemic injury in rats: role of mu receptor antagonism. Neurosci Lett 2003;345:169-172.
139. Liu Y, Qin L, Wilson BC, An L, Hong JS and Liu B. Inhibition by naloxone stereoisomers of beta-amyloid peptide (1-42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons. J Pharmacol Exp Ther 2002;302:1212-1219.
140. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B and Hong JS. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 2004;279:1415-1421.
141.Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF, Zhang W, Hong JS and Liu B. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. FASEB J 2004;18:589-591.
142.Qin L, Block ML, Liu Y, Bienstock RJ, Pei Z, Zhang W, Wu X, Wilson B, Burka T and Hong JS. Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J 2005;19:550-557.
143.Ndengele MM, Muscoli C, Wang ZQ, Doyle TM, Matuschak GM and Salvemini D. Superoxide potentiates NF-kappaB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock 2005;23:186-193.
144. Li YH, Liu SL, Shi GY, Tseng GH, Liu PY and Wu HL. Thrombomodulin plays an important role in arterial remodeling and neointima formation in mouse carotid ligation model. Thromb Haemost 2006;95:128-133.
145.Walpola PL, Gotlieb AI, Cybulsky MI and Langille BL. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol 1995;15:2-10.
146.Kumar A, Hoover JL, Simmons CA, Lindner V and Shebuski RJ. Remodeling and neointimal formation in the carotid artery of normal and P-selectin-deficient mice. Circulation 1997;96:4333-4342.
147.Yokoyama M, Inoue N and Kawashima S. Role of the vascular NADH/NADPH oxidase system in atherosclerosis. Ann N Y Acad Sci 2000;902:241-247.
148.Kumar A, Hoover JL, Simmons CA, Lindner V and Shebuski RJ. Remodeling and neointima formation in the carotid artery of normal and P-selectin-deficient mice. Circulation. 1997;96:4333-4342.
149.Chen Z, Keaney JF Jr, Schulz E, Levison B, Shan L, Sakuma M, Zhang X, Shi C, Hazen SL and Simon DI. Decreased neointimal formation in Nox2-deficient mice reveals a direct role for NADPH oxidase in the response to arterial injury. Proc Natl Acad Sci USA. 2004;101:13014-13019.
150.Cai H, Griendling KK and Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci. 2003;24:471-478.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top