跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳奕瑩
研究生(外文):Wu, E-In
論文名稱:應用於電動車電池管理系統計算電池即時功率之線性電壓-電流轉換電路設計
論文名稱(外文):Linear Voltage-to-Current Converter Design for Calculating EV Battery Real-Time Power in Battery Management System (BMS)
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院電機與控制學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:線性電壓-電流轉換器電池剩餘電量電池管理系統電動車混合動力車
外文關鍵詞:linear voltage-to-current (LVC) converterState of Charge (SOC)battery management system (BMS)electric vehicle (EV)hybrid electric vehicle (HEV)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:639
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
因應環境保護需求,近年來車廠製造各式電動車與混合動力車;計算電池剩餘電量(Stage Of Charge, SOC),是其電池管理系統(Battery Management system, BMS)之重要技術。目前電動車/混合動力車的電池管理系統,多是以庫侖電量累積法來估算SOC;本論文先設計一結構簡單且可調整輸出電流量之高線性電壓-電流轉換電路,再以此電路設計一鋰鐵電池組即時充放電功率計算電路,其輸出之電壓可供電池管理系統作電池SOC估算。
所設計之線性電壓-電流轉換電路,只由3個MOSFET組成,具有輸入電壓範圍大、輸出電流線性區寬廣與可調整範圍大等優點,使用HSPICE以0.25um CMOS製程進行模擬,輸出電流之線性度誤差在0.1%以內,THD約為-60dB,電路消耗功率最小僅約為10uW;電路以外加PMOS來輸出線性電流,以達成各電流量等級,電路特性近似一固定電阻值,若用於取代積體電路內建電阻,可大幅降低多晶矽需求面積;而將2組電路並聯輸出,即可對輸出之線性電流量進行迴授控制,使此高線性度電壓-電流轉換電路更符合實際應用之需求。將本論文所提出之線性電壓-電流轉換電路,結合線性電壓-電阻轉換電路後,再設計一電池充放電判斷電路與時序電路,以對電容充放電方式,組成高電壓電池組充放電即時功率值計算電路,微處理器或DSP可直接使用此電壓值,進行電池組充放總功率積分計算電池SOC,不必再經過多次的取樣、A/D轉換與乘法運算,此將可減輕微處理器或DSP之負擔。電路中之外接調整式精密電阻,能修正因製程差異造成之輸出電壓誤差;使用0.25um CMOS製程進行電池組即時充放電功率值輸出模擬,在電池組最常充放電流範圍下,代表功率之電壓值與正確值差異在2.5%以內。

In recent years, vehicle manufacturers produce many electric vehicles (EV) and hybrid electric vehicles (HEV) for environmental protection. Calculating the State of Charge (SOC) is an important technology in battery management system (BMS). Today, the BMS widely uses coulomb-accumulation method to estimate the SOC. In this thesis, a precise linear voltage-to-current (LVC) converter with an adjust output current function is proposed first. Due to high precision converter, a LiFePO4 battery pack is set up to instantly calculate the charge/discharge power for generating a voltage to the BMS to accurately predict the SOC.
The LVC converter consisting of only three MOSFETs is designed to contain the advantages of wide input voltage and output linear current ranges. Simulation results got by HSPICE in 0.25-μm CMOS process demonstrate the error percentage of the LVC converter is smaller than 0.1% , the Total Harmonic Distortion (THD) achives -60dB, and the minimum power consumption is only about 10μW. The proposed LVC converter outputs linear current in various rates by an additional P-type MOSFET. The function of the LVC is similar to a fix resistance that can substitute internal resistors of integrated circuit, which dramatically reduce the demanding area of polysilicon. The output current can be adjusted by two parallel structures that would be more suitable for real demands.
The proposed LVC converter combines a linear voltage-to-resistance circuit, a battery charge/discharge determined circuit, and a timing circuit to form a battery pack real-time charge/discharge power calculation circuit to output a voltage that represent the battery pack real-time charge/discharge power. The determination power value is directed to the microprocessor or DSP in the BMS to calculate the actual accumulation power in the battery pack without sampling, A/D converter, and multiplication operation, which may increase load of the microprocessor or DSP.
The output voltage error from process differences is able to be corrected by an additional precise resistor. In frequent charge/discharge current range, simulation results of battery pack power in 0.25-μm CMOS process show the prediction error in battery pack power value is smaller than 2.5% compared to the correct value.

摘 要 I
誌 謝 V
目 錄 VI
圖目錄 VIII
第一章 概論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文章節結構 4
第二章 電動車/混合動力車鋰鐵電池組使用特性與庫倫累積法簡介 5
第三章 線性電壓-電流轉換設計 7
3.1 電池模組即時充放電功率計算電路構想 7
3.2 MOSFET電流 7
3.3 MOSFET二極體組態電流特性 8
3.4 習知線性電壓-電流轉換器 9
3.5 MOSFET線性電流設計 11
3.6 MOSFET線性電壓-電流轉換電路 15
3.6.1電路設計 15
3.6.2電路線性度模擬分析 19
3.6.2.1 .DC直流模擬 19
3.6.2.2 .TRAN 弦波電壓模擬 21
3.6.2.3 .AC模擬 22
3.7 MOSFET線性電流輸出電路 23
3.8 MOSFET線性電流輸出量調整電路 24
3.8.1 增量調整式電流輸出電路 24
3.8.2 倍數增量電流輸出電路 26
3.8.3 減量調整式電流輸出電路 27
3.9線性電流反比輸出電路 28
3.9.1 PMOS輸入 28
3.9.2 NMOS輸入 30
第四章 MOSFET電壓-電阻轉換 31
第五章 電池組充放電功率計算電路 33
5.1 電路設計考量 33
5.2 電池組即時充放電功率值計算電路架構 34
5.3 即時充放電功率計算電路設計 34
5.3.1充放電功率電路 35
5.3.2零充放電功率指示電路 36
5.3.3充放電功率計算方式 37
5.3.3.1放電功率計算 38
5.3.3.2充電功率計算 39
5.4 充放電判斷電路 40
5.5 即時充放電功率值處理電路 42
5.5.1功率值電壓輸出電路 43
5.5.2時序電路 48
5.6 電池組即時充放電功率值計算整體電路 51
5.7 誤差值修正電阻 51
第六章 充放電功率值計算電路模擬結果與分析 53
6.1 電池組放電功率模擬 54
6.1.1放電電流10A~100A 54
6.1.2 放電電流1A~10A 57
6.2 電池組充電功率模擬 59
6.3 模擬結果分析 61
第七章 結論與未來研究方向 63
7.1 結論 63
7. 2 未來研究方向 63
參考文獻 65
[1] Behzad Razavi, “Design of Analog CMOS integrated Circuit” McGRAW-HILL,
2001.

[2] Adel S. Sedra, Kenneth C. Smith“Microelectonic Circuits”/Oxford University Press, 2004.

[3] Phillip E. Allen, Douglas R. Holberg,“CMOS analog circuit design”/Oxford University Press, 2002.

[4] Robert W. Erickson and Dragan Maksimovic, “Fundamentals of Power Electronics,” 2nd ed., Norwell, MA: Kluwer Academic Publishers, 2001.

[5] H.Lee Thomas,“The Design of CMOS Radio-Frequency Integrated Circuit,” CAMBRIDGE, 1998.

[6] Donald A Neamen, “Electronic Circuit Analysis and Design”/滄海, 1998.

[7] A.J. Lopez-Martin, A. Carlosena, J.Ramirez-Ansulo and R.G. Carvaial, “Rail-to-rail tunable CMOS V-I converter,” Circuits and Systems, 2006. ISCAS Proceedings, IEEE Conferences.

[8]W. Surakampontorn, V. Riewruja, K. Kumwachara, C. Surawatpunya and K. Anuntahirunrat, “Temperature-insensitive voltage-to-current converter and its applications,” IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 6, pp. 1270 – 1277, 1999.

[9] V. Srinivasan, R. Chawla and P. Hasler, “Linear current-to-voltage and voltage-to-current converters,” IEEE Circuits and Systems. 48th Midwest Symposium, Vol. 1, pp. 675 – 678 , 2005.

[10] B. Fotouhi, “All-MOS voltage-to-current converter,” IEEE Journal of Solid-State Circuits, Vol. 36 , No. 1 , pp. 147 – 151, 2001.

[11] R.Y.Chen and H .T. Shuen, “A linear CMOS voltage-to-current converter,” ISSCS Signals, Circuits and Systems, International Symposium on Vol. 2 , pp. 677 - 680 , 2005.

[12] W. R. Min and H.X. Ren, “Low-Power Exponential V-I Converter Using Composite PMOS Transistors,” IEEE Conferences ,Circuits and Systems, APCCAS, pp. 1473 - 1475 , 2006.
[13] I. Pappas, C. Theodorou, S. Siskos and C.A. Dimitriadis, “A new linear voltage-to-current converter with threshold voltage compensation for analog circuits applications in polycrystalline silicon TFT process,” IEEE International Conference, Electronics, Circuits, and Systems, ICECS 16th, pp. 599 – 602, 2009..

[14] Y. Trond, C.Yuhua and Tor A. Fjeldly,“Device modeling for analog and RF CMOS circuit design,” Wiley , 10 JUN 2003.

[15] K.Balasubramanian, K.V. Vineeth, A. Neeraj and K.M.Nikhil, “MOS Characteristics and a Modified Linear MOS Resistor,” Technical Postgraduates (TECHPOS), International Conference , pp. 1 – 3 , 2009.

[16] Q. Jiaxi iang, A. Guoqiang, H.Jianhui, C. Ziqiang and Y. Lin, “An adaptive algorithm of NiMH battery state of charge estimation for hybrid electric vehicle,” IEEE International Symposium on Industrial Electronics, ISIE, pp. 1556 – 1561. 2008.

[17] Shu-Chuan Huang,“Design of low-voltage linear tunable CMOS V-I converters with a rail-to-rail input range,” IEEE International Symposium on Circuits and Systems, Vol. 1 ,pp. 281 – 284, 1996.

[18] H. Rapakko and J. Kostamovaara, “V-I converter with high linearity and bandwidth,” IET Journals, Electronics Letters, Vol. 42 , No. 15 , pp. 833 - 834, 2006 .

[19] Chunyan Wang,“Wide dynamic range current-to-voltage converters,” IEEE Conferences, Design and Test Workshop, IDT 3rd International, pp. 354 - 357 , 2008.

[20] Chung-Chih Hung, Changku Hwang and M. Ismail,“CMOS low-voltage rail-to-rail V-I converter,”IEEE Proceedings of the 38th Midwest Symposium on Circuits and Systems, Vol.2, pp. 1337 – 1340, 1995 .

[21] Seong-Kweon Kim, A.Minegishi, Yong-Woon Park, S. Kameda, H. Nakase, Y. Isota and K. Tsubouchi, “Voltage to current converter for OFDM current-mode FFT LSI,” IEEE Asia-Pacific Conference on Circuits and Systems , Vol.2 , pp. 729 – 731 ,2004.

[22] R.Shukla, J. Ramirez-Angulo, A. Lopez-Martin, and R.G. Carvajal,“A low voltage rail to rail V-I conversion scheme for applications in current mode A/D converters,”IEEE ISCAS '04. Proceedings of the 2004 International Symposium on Circuits and Systems, Vol.1, pp. I - 916-19 , 2004.
[23] Hong-Wei Huang, Wei-Lun Hsieh and Ke-Horng Chen;“Programmable voltage-to-current converter with linear voltage control resistor,”IEEE International Symposium, Circuits and Systems. ISCAS , pp. 2310 – 2313, 2008.

[24] N. Takai, S. Nomura,“Rail-to-rail OTA utilizing linear V-I conversion circuit using single channel MOSFETs for input stage,”IEEE Proceedings of the 2005 European Conference on Circuit Theory and Design, Vol.1, pp. I/31 - I/34.

[25] Shu-Chuan Huang;“Design of low-voltage linear tunable CMOS V-I converters with a rail-to-rail input range,”IEEE International Symposium on Circuits and Systems , 'Connecting the World', Vol.1 , pp. 281 - 284, 1996 .

[26] A.Nedungadi and T.Viswanathan,“Design of linear CMOS transconductance elements,”IEEE Transactions on Circuits and Systems, Vol.31 , No. 10, pp. 891 – 894, 1984 .

[27] R.J.Wiegerink, E.Seevinck and W. De Jager,“Offset cancelling circuit,”IEEE Journal of Solid-State Circuits, Vol.24 , No. 3, pp. 651 – 658, 1989.

[28] Chua-Chin Wang; Tzung-Je Lee; Chi-Chen Li and Ron Hu,“An All-MOS High Linearity Voltage-to-Frequency Converter Chip with 520 KHz/V Sensitivity,” IEEE Asia Pacific Conference on Circuits and Systems, pp. 267 – 270, 2006.

[29] I.M. Filanovsky and Su Tam Lim;“Temperature sensor applications of diode-connected MOS transistors,” IEEE International Symposium on Circuits and Systems, Vol.2 , pp. II-149 - II-152, 2002.

[30] S. Cai and I. M. Filanovsky,“High precision voltage-to-frequency converter,”in Proc. Of IEEE MSCS, Vol. 2 , pp. 1141 – 1144 ,1994.

[31] Chua-Chin Wanga, Tzung-Je Leea, Chi-Chen Lib, and Ron Huc,“Voltage-to-frequency converter with high sensitivity using all-MOS”Microelectronics Journal Volume 38, Vol. 2, pp. 197-202 , 2007.

[32] J.M. Carrillo, J.F. Duque-Carrillo, G. Torelli and J.L. Ausin,“Constant-gm constant-slew-rate high-bandwidth low-voltage rail-to-rail CMOS input stage for VLSI cell libraries,”IEEE Journal Solid-State Circuits, Vol. 38 , No. 8, pp. 1364 – 1372, 2003.

[33] Xinpeng Xing; Zhihua Wang; Dongmei Li;“A low voltage high precision CMOS bandgap reference,”IEEE Conferences Norchip, pp. 1 - 4, 2007 .

[34] G. Gosset, B. Rue, and D. Flandre,“Very high efficiency 13.56MHz RFID input stage voltage multipliers base on ultra low power MOS diodes”RFID, IEEE International Conference, pp. 134 – 140, 2008.

[35] J.A.C. Theeuwes, H.J. Visser, M.C. van Beurden and G.J.N.Doodeman,“Efficient, Compact, Wireless Battery Design,”Wireless Technologies, IEEE European Conference,
pp. 233 – 236 , 2007.

[36] R.E. Barnett and S. Jin Liu; Lazar,“A RF to DC Voltage Conversion Model for Multi-Stage Rectifiers in UHF RFID Transponders,” IEEE Journal of Solid-State Circuits, Vol. 44 , No. 2 , pp. 354 – 370, 2009.

[37] A. Behradfar, S. Zeinolabedinzadeh and K. HajSadeghi,“A clock boosting scheme for low voltage circuits”IEEE ICECS 2008. 15th , pp. 21 - 24

[38] H.J. Visser, A.C.F. Reniers,and J.A.C. Theeuwes,“Ambient RF energy scavenging :GSM and WLAN power density measurements,” IEEE EuMC 2008. 38th European , pp. 721 – 724.

[39] N. Kiatwarin, C. Sawigun and W. Kiranon,“A Low Voltage four-quadrant analog multiplier using triode-MOSFETs,”ISCIT '06. International Symposium , pp. 1105 – 1108.

[40] K. Bult and H. Wallinga,“A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation,”IEEE Journal of Solid-State Circuits, Vol. 22 , No. 3 , pp. 357 – 365 , 1987.

[41] A. Naderi, H. Mojarrad, H. Ghasemzadeh, A. Khoei and K.Hadidi,“Four-quadrant CMOS analog multiplier based on new current squarer circuit with high-speed,” IEEE Conferences EUROCON 2009, pp. 282 – 287.

[42] A.H. Miremadi, A. Ayatollahi, A. Abrishamifar and A. Siadatan,;“A low voltage CMOS analog multiplier with high linearity,”IEEE Circuit Theory and Design, European Conference,pp. 257 – 262, 2009.

[43] R. Garg, G. Mallarapu and S.P. Khatri,“A Single-supply True Voltage Level Shifter,” IEEE Conferences Design, Automation and Test in Europe, pp. 979 – 984, 2008.

[44] Q.A. Khan, S.K. Wadhwa and K. Misri,“A single supply level shifter for multi-voltage systems,”VLSI Design, 2006. Held jointly with 5th International Conference on Embedded Systems and Design., 19th International Conference.

[45] Huijun Li; Chenglin Liao and Lifang Wang;“Research on State-of-Charge Estimation of Battery Pack Used on Hybrid Electric Vehicle,”Power and Energy Engineering Conference, Asia-Pacific, APPEEC 2009. pp. 1 – 4.

[46] Kong-Soon Ng; Yao-Feng Huang; Chin-Sien Moo and Yao-Ching Hsieh;“An enhanced coulomb counting method for estimating state-of-charge and state-of-health of lead-acid batteries,”Telecommunications Energy Conference, INTELEC 2009. 31st International, pp. 1 – 5.

[47] Jiaxi Qiang; Guoqiang Ao; Jianhui He; Ziqiang Chen; Lin Yang;“An adaptive algorithm of NiMH battery state of charge estimation for hybrid electric vehicle,”ISIE 2008. IEEE International Symposium, pp. 1556 – 1561.

[48] S. Santhanagopalan and R.E. White,;“State of charge estimation for electrical vehicle batteries,”IEEE International CCA 2008 , pp. 690 – 695.

[49] B.S. Bhangu, P. Bentley, D.A. Stone and C.M. Bingham,“Observer techniques for estimating the state-of-charge and state-of-health of VRLABs for hybrid electric vehicles,” Vehicle Power and Propulsion, 2005 IEEE Conference.

[50] V. Coroban, I. Boldea and F. Blaabjerg,“A novel on-line state-of-charge estimation algorithm for valve regulated lead-acid batteries used in hybrid electric vehicles,”ACEMP '07. International Aegean Conference, pp. 39 – 46.

[51] Il-Song Kim;“Nonlinear State of Charge Estimator for Hybrid Electric Vehicle Battery,”Power Electronics, IEEE Transactions on Vol. 23 , No. 4, pp. 2027 – 2034, 2008.

[52] Jingyu Yan; Chongguo Li; Guoqing Xu and Yangsheng Xu;“A novel on-line self-learning state-of-charge estimation of battery management system for hybrid electric vehicle,”IEEE Intelligent Vehicles Symposium, pp.1161 – 1166, 2009.

[53] Jie Xu; Mingyu Gao; Zhiwei He; Quanjun Han; Xuguang Wang;“State of Charge Estimation Online Based on EKF-Ah Method for Lithium-Ion Power Battery,”IEEE CISP '09. 2nd International Congress, pp. 1 - 5 ,

[54] Wu Guoliang; Lu Rengui; Zhu Chunbo and C.C. Chan,;“State of charge Estimation for NiMH Battery based on electromotive force method,”IEEE Vehicle Power and Propulsion Conference, pp. 1 – 5, 2008.

[55] M. Einhorn, F.V. Conte, C. Kral and J. Fleig,“A method for online capacity estimation of lithium ion battery cells using the state of charge and the transferred charge,”IEEE ICSET, pp. 1 – 6, 2010.

[56] Shi Qingsheng; Zhang Chenghui; Cui Naxin and Zhang Xiaoping;“Battery State-Of-Charge estimation in Electric Vehicle using Elman neural network method,” Control Conference Chinese (CCC) 29th, pp. 5999 – 6003, 2010.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top