|
WormBase WS220 16 Dec 2010 http://ws220.wormbase.org/
Altun, Z.F., Herndon, L.A., Crocker, C., Lints, R. and Hall, D.H. (ed.s) (2002-2010). WormAtlas. Bargmann, C.I. (2006). Chemosensation in C. elegans. WormBook : the online review of C elegans biology, 1-29. Bargmann, C.I., and Mori, I. (1997). Chemotaxis and Thermotaxis. In C elegans II, D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess, eds. (Cold Spring Harbor (NY)). Boldogh, I.R., and Pon, L.A. (2007). Mitochondria on the move. Trends in cell biology 17, 502-510. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Calkins, M.J., Manczak, M., Mao, P., Shirendeb, U., and Reddy, P.H. (2011). Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Human molecular genetics 20, 4515-4529. Calkins, M.J., and Reddy, P.H. (2011). Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. Biochimica et biophysica acta 1812, 507-513. Carberry, K., Wiesenfahrt, T., Windoffer, R., Bossinger, O., and Leube, R.E. (2009). Intermediate filaments in Caenorhabditis elegans. Cell motility and the cytoskeleton 66, 852-864. Chada, S.R., and Hollenbeck, P.J. (2004). Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14, 1272-1276. Chang, D.T., Rintoul, G.L., Pandipati, S., and Reynolds, I.J. (2006). Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 22, 388-400. Chang, K.T., Niescier, R.F., and Min, K.T. (2011). Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc Natl Acad Sci USA 108, 15456-15461. Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics — fusion, fission, movement, and mitophagy — in neurodegenerative diseases. Hum Mol Genet 18, 169-176. Chen, S., Owens, G.C., Crossin, K.L., and Edelman, D.B. (2007). Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol Cell Neurosci 36, 472-483. Chen, Y.M., Gerwin, C., and Sheng, Z.H. (2009). Dynein light chain LC8 regulates syntaphilin-mediated mitochondrial docking in axons. J Neurosci 29, 9429-9438. Christensen, M., Estevez, A., Yin, X., Fox, R., Morrison, R., McDonnell, M., Gleason, C., Miller, D.M., 3rd, and Strange, K. (2002). A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503-514. Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature reviews Molecular cell biology 8, 870-879. Dixit, R., Ross, J.L., Goldman, Y.E., and Holzbaur, E.L. (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086-1089. Driscoll, M., and Kaplan, J. (1997). Mechanotransduction. In C elegans II, D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess, eds. (Cold Spring Harbor (NY)). Gentil, B.J., Minotti, S., Beange, M., Baloh, R.H., Julien, J.P., and Durham, H.D. (2012). Normal role of the low-molecular-weight neurofilament protein in mitochondrial dynamics and disruption in Charcot-Marie-Tooth disease. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26, 1194-1203. Glater, E.E., Megeath, L.J., Stowers, R.S., and Schwarz, T.L. (2006). Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173, 545-557. Haghnia, M. (2007). Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell 18, 2081-2089. Haycraft, C.J., Swoboda, P., Taulman, P.D., Thomas, J.H., and Yoder, B.K. (2001). The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128, 1493-1505. Hirokawa, N. (1982). Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94, 129-142. Hollenbeck, P.J., and Saxton, W.M. (2005). The axonal transport of mitochondria. J Cell Sci 118, 5411-5419. Horiuchi, D., Barkus, R.V., Pilling, A.D., Gassman, A., and Saxton, W.M. (2005). APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr Biol 15, 2137-2141. Inglis, P.N., Ou, G., Leroux, M.R., and Scholey, J.M. (2007). The sensory cilia of Caenorhabditis elegans. WormBook : the online review of C elegans biology, 1-22. Jiménez-Mateos, E.M., González-Billault, C., Dawson, H.N., Vitek, M.P., and Avila, J. (2006). Role of MAP1B in axonal retrograde transport of mitochondria. Biochem J 397, 53-59. Kaminsky, R., Denison, C., Bening-Abu-Shach, U., Chisholm, A.D., Gygi, S.P., and Broday, L. (2009). SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Developmental cell 17, 724-735. Kang, J.S. (2008). Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137-148. Karabinos, A., Schulze, E., Schunemann, J., Parry, D.A., and Weber, K. (2003). In vivo and in vitro evidence that the four essential intermediate filament (IF) proteins A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system. Journal of molecular biology 333, 307-319. Kardon, J.R., and Vale, R.D. (2009). Regulators of the cytoplasmic dynein motor. Nature reviews Molecular cell biology 10, 854-865. Kocsis, E., Trus, B.L., Steer, C.J., Bisher, M.E., and Steven, A.C. (1991). Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. Journal of structural biology 107, 6-14. Labouesse, M. (2006). Epithelial junctions and attachments. WormBook : the online review of C elegans biology, 1-21. Leterrier, J.F., Rusakov, D.A., Nelson, B.D., and Linden, M. (1994). Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microscopy research and technique 27, 233-261. Liu, J., Wang, P., He, L., Li, Y., Luo, J., Cheng, L., Qin, Q., Brako, L.A., Lo, W.K., Lewis, W., et al. (2011). Cardiomyocyte-Restricted Deletion of PPARbeta/delta in PPARalpha-Null Mice Causes Impaired Mitochondrial Biogenesis and Defense, but No Further Depression of Myocardial Fatty Acid Oxidation. PPAR research 2011, 372854. Liu, Q.A., and Shio, H. (2008). Mitochondrial morphogenesis, dendrite development, and synapse formation in cerebellum require both Bcl-w and the glutamate receptor delta2. PLoS genetics 4, e1000097. Macaskill, A.F. (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541-555. MacAskill, A.F., and Kittler, J.T. (2010). Control of mitochondrial transport and localization in neurons. Trends Cell Biol 20, 102-112. Magrane, J., and Manfredi, G. (2009). Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. Antioxidants &; redox signaling 11, 1615-1626. Mironov, S.L. (2007). ADP regulates movements of mitochondria in neurons. Biophys J 92, 2944-2952. Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J., and Baloh, R.H. (2010). Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30, 4232-4240. Morris, R.L., and Hollenbeck, P.J. (1993). The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104, 917-927. Naisbitt, S. (2000). Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci 20, 4524-4534. Nekrasova, O.E., Mendez, M.G., Chernoivanenko, I.S., Tyurin-Kuzmin, P.A., Kuczmarski, E.R., Gelfand, V.I., Goldman, R.D., and Minin, A.A. (2011). Vimentin intermediate filaments modulate the motility of mitochondria. Molecular biology of the cell 22, 2282-2289. Orr, A.L. (2008). N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 28, 2783-2792. Perkins, L.A., Hedgecock, E.M., Thomson, J.N., and Culotti, J.G. (1986). Mutant sensory cilia in the nematode Caenorhabditis elegans. Developmental biology 117, 456-487. Perrot, R., and Julien, J.P. (2009). Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23, 3213-3225. Pierce-Shimomura, J.T., Faumont, S., Gaston, M.R., Pearson, B.J., and Lockery, S.R. (2001). The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694-698. Pilling, A.D., Horiuchi, D., Lively, C.M., and Saxton, W.M. (2006). Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17, 2057-2068. Quintero, O.A. (2009). Human Myo19 is a novel myosin that associates with mitochondria. Curr Biol 19, 2008-2013. Riddle, D.L., and Albert, P.S. (1997). Genetic and Environmental Regulation of Dauer Larva Development. In C elegans II, D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess, eds. (Cold Spring Harbor (NY)). Russo, G.J. (2009). Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J Neurosci 29, 5443-5455. Saeki, S., Yamamoto, M., and Iino, Y. (2001). Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. The Journal of experimental biology 204, 1757-1764. Schafer, J.C., Winkelbauer, M.E., Williams, C.L., Haycraft, C.J., Desmond, R.A., and Yoder, B.K. (2006). IFTA-2 is a conserved cilia protein involved in pathways regulating longevity and dauer formation in Caenorhabditis elegans. Journal of cell science 119, 4088-4100. Sheng, Z.H., and Cai, Q. (2012). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature reviews Neuroscience 13, 77-93. Shi, P., Ström, A.L., Gal, J., and Zhu, H. (2010). Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport. Biochim Biophys Acta 1802, 707-716. Strange, K., Christensen, M., and Morrison, R. (2007). Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies. Nature protocols 2, 1003-1012. Suter, D.M., and Hollenbeck, P.J. (2012). How to get on the right track. Nature neuroscience 15, 7-8. Tanaka, K., Sugiura, Y., Ichishita, R., Mihara, K., and Oka, T. (2011). KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. Journal of cell science 124, 2457-2465. Tang, H.L., Lung, H.L., Wu, K.C., Le, A.H., Tang, H.M., and Fung, M.C. (2008). Vimentin supports mitochondrial morphology and organization. The Biochemical journal 410, 141-146. Tien, N.W., Wu, G.H., Hsu, C.C., Chang, C.Y., and Wagner, O.I. (2011). Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiology of disease 43, 495-506. Trinczek, B., Ebneth, A., Mandelkow, E.M., and Mandelkow, E. (1999). Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112, 2355-2367. Wagner, O.I. (2003). Mechanisms of mitochondria-neurofilament interactions. J Neurosci 23, 9046-9058. Wang, X. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893-906. Wang, X., and Schwarz, T.L. (2009). The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163-174. Winter, L., Abrahamsberg, C., and Wiche, G. (2008). Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. The Journal of cell biology 181, 903-911. Woo, W.M., Goncharov, A., Jin, Y., and Chisholm, A.D. (2004). Intermediate filaments are required for C. elegans epidermal elongation. Developmental biology 267, 216-229. Wozniak, M.J., Melzer, M., Dorner, C., Haring, H.U., and Lammers, R. (2005). The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC cell biology 6, 35.
|