|
1.Lesher,G.Y.; Froelich,E.J.; Gruett, M.D.; Bailey,J.H.; Brundage, R. P. 1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents. J. Med. Chem. 1962, 5, 1063-1065. 2. Kaminsky,D.; Meltzer, R.I.U.S.Pat.3287458 ,1966,(22 November). 3. Matsumoto, J.; Minami, S. Pyrido [2,3-d]pyrimidine Antibacterial Agents.3. 8-Alkyl- and 8-Vinyl-5,8-dihydro-5-oxo-2(1-piperazinyl) pyrido [2,3-d] pyri-midine-6-carboxylic Acids and Their Derivatives. J. Med. Chem. 1975, 18, 74-77. 4. Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikuura, T. Structure-Activity Relationships of Antibacterial 6,7 and 7,8-Disubstituted 1-Alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic Acids. J. Med. Chem. 1980, 23, 1358-1363. 5. Goueffon, Y.; Montay, G.; Roquet, F.; Pesson, M. New Synthetic Anti-microbial Agents: 1,4-Dihydro-1-ethyl-6-fluoro-7-(4-methyl-1-piperazinyl)-4-oxoquinoline-3-carboxylic Acid. C. R. Seances Acad. Sci. 1981, 292, 37-40. 6. Hayakawa, I.; Hiramitsu, T.;Tanaka, Y. Synthesis and Antibacterial Activities of Substituted 7-Oxo-2,3-dihydro-7H-pyrido[1,2,3-de][1,4]-benzoxazine-6-carboxylic Acids. Chem. Pharm. Bull. 1984, 32, 4907-4913. 7. Grohe, K.; Heitzer, H. Synthesis von 4-Chinolon-3-carbonsauren. Liebigs Ann. Chem. 1987, 1, 29-37. 8. Shen, L. L.; Chu, D. T. W. TypeⅡ DNA Topoisomerase as Antibacterial Targets. Curr. Pharm. Des. 1996, 2, 195-208. 9. Marians, K. J.; Hiasa, H.; Mechanism of Quinolone Action. J. Biol .chem. 1997, 272, 9401-9409. 10. Chu, D. T. W. Recent Development in Antibacterial Research. Annu. Rep. Med. Chem. 1998, 33, 141-150. 11. Cozarelli, N. R. DNA Gyrase and the Supercoiling of DNA. Science 1980, 207, 953-960. 12. Froelich-Ammon, S. J.; Osheroff, N. Topoisomerase Poisons: Harnessing the Dark Side of Enzyme Mechanism. J. Biol .chem. 1995, 270, 21429-21432. 13. Shen, L. L.; Kohlbrenner, W. E.; Weigl, D.; Baranowski, J. Mechanism of Quinolone Inhibition of DNA Gyrase. J. Biool. Chem. 1989, 264, 2973-2978. 14. Shen, L. L.; Mitscher, L. A.; Sharma, P. N.; O’Donnell, T. J.; Chu, D. W. T.; Cooper, C. S.; Pernet, A. G. Mechanism of Inhibition of DNA Gyrase by Quinolone Antibacterials: A Cooperative Drug-DNA Binding Model. Biochemistry. 1989, 28, 3886-3894. 15. Neu, H. C.; Labthavikul, P. In vitro activity of norfloxacin, a quinoline-carboxylic acid, compared with that of beta-lactams, aminoglycosides and trimethoprim. Antimicrob Agents Chemother. 1982, 22, 23-27. 16. Gutmann, L.; Williamson, R.; Collatz, E. The possible role of porins in bacterial antibiotic resistance. Ann. Intern. Med. 1984, 101, 554-557. 17. Hussy, P.; Maass, G.; Tummler, B.; Grosse, F.; Schomburg, U. Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase alpha primase complex, topoisomeraseⅠandⅡ, and growth of mammalian lymphoblasts. Antimicrob Agents Chemother. 1986, 29, 1073-1078. 18. Chu, D. T. W.; Fernandes, P. B. Recent developments in the field of quinolone antibacterial agents. In Advances in Drug Research; Testa, B.; Ed.; Academic Press: New York, 1991, 21, pp 39-144. 19. Chu, D. T. W. A Regiospecific Synthesis of 1-Methylamino-6-fluoro-7-(4-methylpiperazin-1-yl)-1,4-dihydro-4-oxoquinoline-3-carboxylic Acid.J. Heterocyclic Chem. 1985, 22, 1033-1034. 20. Bouzard, D.; Di Cesare, P.; Essiz, M.; Jacquet, J. P.;Kiechel, J. R.; Remuzon, P.; Weber, A.; Oki, T.; Masuyoshi, M.; Kessler, R. E.; Fung-Tomc, J.; Desiderio, J. Fluoronaphthyridines and quinolones as antibacterial agents. 2. Synthesis and structure-activity relationships of new 1-tert-butyl 7-substituted derivatives. J. Med. Chem. 1990, 33, 1344-1352. 21. Sanchez, J. P.; Domagala, J. M.; Hagen, S. E.; Heifetz, C. L.; Hutt, M. P.; Nichols, J. B.; Trehan, A. K. Quinolone Antibacterial Agents. Synthesis and Structure-Activity Relationships of 8-Substituted Quinoline-3-carboxylic Acids and 1,8-Naphthyridine-3-carboxylic Acids. J. Med. Chem. 1988, 31, 983-991. 22. Reuman, M.; Daum, S. J.; Singh, B.; Wentland, M. P.; Perni, R. B.; Pennock, P.; Carabateas, P. M.; Gruett, M. D.; Saindane, M. T.; Dorff, P. H.; Coughlin, S. A.; Sedlock, D. M.; Rake, J. B.; Lesher, G. Y. Synthesis and Antibacterial Activity of Some Novel 1-Substituted 1,4-Dihydro-4-oxo-7-pyridinyl-3-quinoline carboxylic Acids. Potent Antistaphylococcal Agents. J. Med. Chem. 1995, 38, 2531-2540. 23. Bouzard, D.; Di Cesare, P.; Essiz, M.; Jacquet, J. P.; Remuzon, P.; Weber, A.; Oki, T.; Masuyoshi M. Fluoronaphthyridines and quinolones as antibacterial agents. 1. Synthesis and structure-activity of new 1-substituted derivatives. J. Med. Chem. 1989, 32, 537-542. 24. Chu, D. T. W.; Fernandes, P. B.; Claiborne, A. K.; Pihuleac, E.; Nordeen, C. W.; Maleczka, R. E.; Pernet, A. G. Synthesis and Structure-Activity Relation-ships of Novel Aryl-fluoroquinolone Antibacterial Agents. J. Med. Chem. 1985, 28, 1558-1564. 25. Radl, S.; Moural, J.; Bendova, R. Synthesis and Anti-bacterial Activity of some 1-Aryl-1,4-dihydro-4-Oxocinnoline-3-carboxylic acids. Collect. Czech. Chem. Commun. 1990, 55, 1311-1319. 26. Renau, T. E.; Sanchez, J. P.; Shapiro, M. A.; Dever, J. A.; Gracheck, S. J.; Domagala, J. M. Effect of lipophilicity at N-1 on activity of fluoroquinolones against mycobacteria. J. Med. Chem. 1995, 38, 2974-2977. 27. Renau, T. E.; Sanchez, J. P.; Gage, J. W.; Dever, J. A.; Shapiro, M. A; Gracheck, S. J.; Domagala, J. M. Structure-Activity Relationships of the Quinolone Antibacterials against Mycobacteria: Effect of Structural Changes at N-1 and C-7. J. Med. Chem. 1996, 39, 729-735. 28. Chu, D. T. W. Synthesis of 6-Fluoro-7-piperazin-1-yl-9-cyclopropyl-2,3,4,9-tetrahydroisothiazolo[5,4-b]quinoline-3,4-dione and 6-Fluoro-7-piperazin-1-yl-9-p-fluorophenyl-2,3,4,9-tetrahydroisothiazolo[5,4-b]quinoline-3,4-dione-[1]. J. Hetero-cyclic Chem. 1990, 27, 839-843. 29. Chu, D. T. W.; Claiborne, A. K. Practial Synthesis of Iminochlorothioformates: Application of Iminochlorothio-formates in the Synthesis of Novel 2,3,4,9-Tetrahydrosothiazolo[5,4-b][1,8]naphthyridine-3,4-diones and 2,3,-4,9-Tetrahydro-isothiazolo[5,4-b]quinoline-3,4-dione Derivatives. J. Hetero-cyclic Chem. 1990, 27, 1191-1195. 30. Manfred. E.W. In “Burger’s Medicinal Chemistry and Drug Discovery; Therapeutic Agents” (John, W.; Sons. I. eds). A Wiley Interscience publi-cation, New. York. 1997, 4, pp.267-270. 31. Miyamoto, T.; Matsumoto, J.; Chiba, K.; Egawa. H.; Shibamori, K.; Minamida, A.; Nishimura, Y.; Okada, H.; Kataoka, M.; Fujita, M.; Hirose, T.; Nakano, J. Synthesis and Structure-Activity Relationships of 5-Substituted 6,8-Difluoroquinolones, Including Sparfloxacin, a New Quinolone Anti-bacterial Agent with Improved Potency. J. Med. Chem. 1990, 33, 1645-1656. 32. Domagala, J. M.; Hanna, L. D.; Heifetz, C. L.; Hutt, M. P.; Mich, T. F.; Sanchez, J. P.; Solomon, M. New Structure-Activity Relationships of the Quinolone Antibacterials Using the Target Enzyme. The Development and Application of a DNA Gyrase Assay. J. Med. Chem. 1986, 29, 394-404. 33. Cecchetti,V.; Clementi,S.; Cruciani,G.; Fravolini,A.; Pagella,P.G.; Savino,A.; Tabarrini,O. 6-Aminoquinolones: A New Class of Quinolone Anti-bacterials ? J. Med. Chem. 1995, 38, 973-982. 34. Cecchetti, V.; Fravolini,A.; Lorenzini,M.C.; Tabarrini,O.; Terni,P.; Xin, T. Studies on 6-Aminoquinolones: Synthesis and Antibacterial Evaluation of 6-Amino-8-methylquinolones. J. Med. Chem. 1996, 39, 436-445. 35. Chu, D.T.W.; Nordeen,C.W.; Hardy,D, Antibacterial Activities, and Pharmacological Properties of Enantiomers of Temafloxacin Hydrochloride. J. Med. Chem. 1991, 34, 168-174. 36. Chu, D.T.W.; Lico,I. temafloxacin, a potent antibacterial agent. Can. J. Chem. 1992, 70, 1323-1327. 37. Uno,T.; Kondo,H.; Inoue,Y.; Kawahata,Y.; Sotomura,M.; Iuchi,K. Syn-thesis and Antibacterial Activities of 7-(4-Hydroxypiperazin-1-yl)quinolones. J. Med. Chem. 1990, 33, 2929-2932. 38. Narita,H.; Konishi,Y.; Nitta,J.; Nagaki,H.; Kobayashi,Y.; Watanabe,Y.; Minami,S.; Saikawa,I. Pyridonecarboxylic acids as antibacterial agents. IV. Synthesis and structure-activity relationship of 7-amino-1-aryl-6-fluoro-4-quinolone-3-carboxylic acids. Yakugaku Zasshi.1986, 106, 795-801. 39. Uno,T.; Takamatsu,M.; Inoue,Y.; Kawahata,Y.; Iuchi,K.; Tsukamoto,G. Synthesis of Antimicrobial Agents. 1. Synthesis and Antibacterial Activies of 7-(Azole substituted)quinolones. J. Med. Chem. 1987, 30, 2163-2169. 40. Cecchetti, V.; Fravolini,A.; Palumbo,M.; Sissi,C.; Tabarrini,O.; Terni,P.; Xin, T. Potent 6-Desfluoro-8-methylquinolones as New Lead Compounds in Antibacterial Chemotherapy. J. Med. Chem. 1996, 39, 4952-4957. 41. Chu,D.T.W.; Fernandes,P.B.; Maleczka,R.E.; Nordeen,C.W.; Pernet, A. G. Synthesis and Structure-Activity Relationship of 1-Aryl-6,8-difluoro-quinolone Antibacterial Agents. J. Med. Chem. 1987, 30, 504-509. 42. Chu, D.T.W.; Maleczka,R.E.Synthesis of 4-Oxo-4H-quino[2,3,4-i, j][1,4]-benoxazine-5-carboxylic Acid Derivatives. J. Hetero-cyclic Chem. 1987, 24, 453-456. 43. Corrado,M.L.; Cherubin,C.E.;Shulman,M. The comparative activity of norfloxacin with other antimicrobial agents against gram-positive and gram-negative bacteria. J. Antimicrob Chemo-ther. 1983, 11, 369-376. 44. Forward,K.R.; Harding,G.K.;Gray,G.J.; Uria,B.A.;Ronald, A. R. Comparative activities of norfloxacin and fifteen other antipseudomonal agents against gentamicin-susceptible and —resistant Pseudomonas aeruginosa strains. Antimicrob Agents Chemother. 1983, 24, 602-604. 45. Smith,S.M. In vitro comparison of A-56619, A-56620, amifloxacin, ciprofloxacin, enoxacin, norfloxacin,and ofloxacin against methicillin resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1986, 29, 325-326. 46. Foster,J.in vitro activity of quinolone antibiotics and vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus by time kill kinetic studies. Antimicrob Agents Chemother. 1986, 30, 823-827. 47. Kondo,H.; Sakamoto,F.; Kodera,Y.; Tsukamoto,G. Studies on Prodrugs. 5. Synthesis and Antimicrobial activity of N-(Oxoalkyl)norfloxacin Derivatives. J. Med. Chem. 1986, 29, 2020-2024. 48. Cooper,C.S.; Klock,P.L.; Chu,D.T.W.; Hardy,D.J.; Swanson, R.N.; Plattner,J.J. Preparation and in Vitro and in Vivo Evaluation of Quinolones with Selective Activity against Gram-Positive Organisms. J. Med. Chem. 1992, 35, 1392-1398. 49. Hong,C.Y.; Kim,Y.K.;Chang,J.H.;Choi,S.H.;Nam,D.H.;Kim,Y. Z.;Kwak,J.H. Novel Fluoroquinolone Antibacterial Agents Containing Oxime-Substituted(Aminomethyl)pyrrolidines: Synthesis and Antibacterial Activity of 7-(4-Aminomethyl)-3-(methoxyimino)pyrrolidin-1-yl)-1-cyclo-propyl-6-fluoro-4-oxo-1,4-dihydro [1,8] naphthyridine-3-carboxylic Acid (LB20304). J. Med. Chem. 1997, 40, 3584-3593. 50. Hong,C.Y.;Kim,Y.K.;Lee,Y.H.;Kwak,J.H. Methyloxime-substituted Aminopyrrolidine: A new Surrogate for 7-Basic Group of Quinolone. Bioorg. Med. Chem. Lett. 1998, 8, 221-226. 51. Lee, K.H.; Furukawa,H.; Huang,E.S. Synthesis and cytotoxic activity of helenalin Amine adducts and related derivatives. J. Med. Chem. 1972, 15, 609-611. 52. Lee,K.H.;Anuforo,D.C.; Huang,E.S.; Piantadosi, C.Antitumor agents. I. Augustibalin, A new cytotoxic sesquiterpene lactone from Balduina Augusifolia. J. Pharm. Sci. 1972, 61, 626-628. 53. Lee,K.H.;Ibuka,T.;Wu,R.Y. Beta Unsubstituted Cyclopentenone , A structure requirement for antimicrobial and cytotoxic activities. Chem. Pharm. Bull. 1974, 22, 2206-2208. 54. Heindel,N.D.; Minatelli,J.A. Synthesis and Antibacterial and Anticancer Evaluations of α-Methylene-γ-butyrolactones. J. Pharm. Sci. 1981, 70, 84-86. 55. Kupchan,S.M.; Fessler,D.lactone tumor inhibitors with model biological nucleophiles. Science (Washington D. C.). 1970, 168, 376-378. 56. Lee, K.H.; Wu,Y.S.;Hall,I.H. Antitumor agents. 25. Synthesis and antitumor activity of uracil and thymine α-Methylene-γ-lactones and related derivatives. J. Med. Chem. 1977, 20, 911-914. 57. Heindel,N.D.; Minatelli,J.A. Synthesis and antibacterial and anticancer evaluations of α-Methylene-γ-butyrolactones. J. Pharm. Sci. 1981, 70, 84-86. 58. Sanyal,U.; Mitra,S.;Pal,P.; Chakraborti,S.K. Newα-Methylene-γ-lactone derivatives of substituted nucleic acid bases as potential anticancer agents. J. Med. Chem. 1986, 29, 595-599. 59. Lee,K.H.; Rice,G.K.; Hall,I.H. Antitumor agents.86. Synthesis and cyto-toxicity of α-Methylene-γ-lactones. J. Med. Chem. 1987, 30, 586-588. 60. Hung,B.R.; Lee,K. H.; Hwang,L.C.; Han,C.H.;Chen,Y.L.; Tzeng,C.C. Synthetic and cytotoxic studies of uracilα-Methylene-γ-butyrolactone- and Its derivatives. Chin. Pharm. J. 1991, 43, 447-455. 61. Chen,Y.L.; Wang,T.C.; Tzeng,C.C.; Chang,N.C. Geiparvarin Analogues: Synthesis and Anticancer Evaluation ofα-Methylidene-γ-butyrolactone-Bearing Coumarins. Helv. Chim. Acta. 1999, 82, 191-197. 62. Ohler,E.; Reininger,K.;Schmidt,U. Angew. Chem., Int. Ed., Engl. 1970, 9, 457. 63. Wang,T.C.; Chen,Y.L.; Tzeng,C.C.; Liou,S.S.; Chang,Y.L.; Teng,C.M. Antiplatelet α-Methylidene-γ-butyrolactones: Synthesis and Evaluation of Quinoline, Flavon, and Xanothone Derivatives. Helv. Chim. Acta. 1996, 79, 1620-1626. 64. Chen,Y.L.; Wang,T.C.; Liang,S.C.; Teng,C.M.; Tzeng,C.C. Synthesis and Evaluation of Coumarinα-Methylidene-γ-butyrolactones: A New Class of Platelet Aggregation Inhibitors. Chem. Pharm. Bull. 1996, 44, 1591-1595. 65. Chen,Y.L.; Wang,T.C.; Chang,N.C.; Chang,Y.L.; Teng,C.M.; Tzeng,C.C.α-Methylene-γ-butyrolactones: Synthesis and Vasorelaxing Activity Assay of Coumarin, Naphthalene, and Quinoline Derivatives. Chem. Pharm. Bull. 1998, 46, 962-965. 66. Wang,T.C.; Lee,K.H.; Cheng,Y.L.; Liou,S.S.; Tzeng,C.C. Synthesis and Anticancer Evaluation of Certainγ-Aryloxymethyl-α-methylene-γ-phenyl-γ-butyrolactones. Bioorg. Med. Chem. Lett.1998, 8, 2773-2776. 67. Ziegler,C.B.; Curran,W.V.; Kuck,N.A. Synthesis and antibacterial activity of some 7-Substituted 1-Ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carbo-xylic Acids: Ethers, Secondary Amines and Sulfides as C-7 Substituents. J. Heterocyclic Chem. 1989, 26, 1141-1145. 68. Fujita,T. In “Drug Design: Factory Fantasy”(Jolles, G.; Woolridge,K.R.H. eds), Academic Press, London. 1984, pp.19-33. 69. Silverstein, R.M.; Webster,F.X. 13CNMR Spectrometry. In Spectrometry Identification of Organic compounds,6 th ed.; 1998, pp217-249. 70. Sheu,J.Y.; Chen,Y.L.; Fang,K.C.; Wang,T.C.; Peng,C.F.; Tzeng,C.C. Synthesis and Antibacterial Activity of 1-(Substituted-benzyl)-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic Acids and their 6,8-Difluoro Analogs. J. Heterocyclic Chem. 1998, 35, 955-964. 71. Monks, A.; Scudiero, D.; Skehaan, P.; Shoemaker, R.; Paull, K.; Vistica,D.; Hose,C.; Langley,J.; Cronise,P.; Vaigro-Wolff, A.; Gray-Goodrich,M.; Campbell,H.; Mayo,J.; Boyd,M. Feasibility of a High-flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. J. Natl. Cancer Inst. 1991, 83, 757-766.
|