跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 10:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林玉真
研究生(外文):Yu-Chen Lin
論文名稱:Hinokitiol對血小板glycoproteinVI的抑制活性探討
論文名稱(外文):Inhibitory Effect of Hinokitiol on Glycoprotein VI in Human Platelets
指導教授:許準榕
指導教授(外文):Joen-Rong Sheu
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:128
中文關鍵詞:扁柏酚檜木醇血小板醣蛋白 VI
外文關鍵詞:hinokitiolβ-thujaplicinplateletglycoprotein VI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Hinokitiol,又稱為β-thujaplicin,為存於柏科類植物心材之罩酚酮化合物。hinokitiol為金屬螯合劑,已被證實具有抗發炎、抗腫瘤,以及抗菌之作用,廣泛用於醫藥產品、化妝品以及食品添加物上。於血小板細胞中,hinokitiol藉由其螯合鐵離子的能力,進而抑制血小板細胞中12-lipoxygenases的酵素活性,作為12-lipoxygenases選擇性抑制劑。另外,hinokitiol已被證實可抑制collagen所誘導之血小板凝集作用,並專一性的涉及glycoprotein VI (GPVI)訊息傳遞路徑。然而,hinokitiol於血小板GPVI訊息傳遞路徑中所扮演的角色與機轉,目前仍未明確。因此,本篇研究有意探討hinokitiol如何藉由GPVI訊息傳遞路徑,抑制血小板的活性。於本篇研究顯示,hinokitiol (1或2 μM)有效的抑制convulxin (GPVI agonist, 160 ng/ml)所誘導血小板之p38 MAPK、ERK、JNK、Akt、PLCγ2、Lyn磷酸化;另外,hinokitiol亦能有效的降低血小板GPVI與Lyn的鍵結,進而抑制convulxin所誘導之GPVI訊息傳遞路徑。基於以上實驗結果,hinokitiol抑制血小板之機轉為:hinokitiol藉由抑制GPVI活化路徑中的第一步—抑制GPVI與Lyn之鍵結,使Lyn的活性被抑制,進而抑制GPVI訊息傳遞下游之路徑,包括:Akt、PLCγ2、p38 MAPK、ERK、JNK路徑的抑制。因此,hinokitiol可藉由抑制血小板GPVI訊息傳遞路徑,最終抑制血小板的活性及凝集作用。然而,hinokitiol可專一性的與GPVI receptor進行交互作用,可作為血小板GPVI receptor之抑制劑,將有助於抗血栓之形成,於臨床上,可望用以預防或治療血栓性疾病。

Hinokitiol, also known as β-thujaplicin, a tropolone derivative found in the heartwood of cupressaceous plants. Hinokitiol is a metal chelator and has various biological activities, including anti-inflammatory, anti-bacterial, and anti-tumor. It is extensively untilized as clinical products, cosmetics, and food additives. In platelets, hinokitiol acts as a potent inhibitor particularly for the platelet-type 12-lipoxygenase due to its iron chelating activity. In addition, hinokitiol has been demonstrated that it can effectively inhibit platelet aggregation induced by collagen, and it also specifically involved in glycoprotein VI (GPVI) signaling. However, the roles and the mechanisms of hinokitiol in platelet GPVI signaling were not yet understood. We are interested in investigating the antiplatelet mechanisms of hinokitiol on GPVI signaling. In this study, we found that hinokitiol (1 or 2 μM) significantly inhibited p38 MAPK, ERK, JNK, Akt, PLCγ2, Lyn phosphorylation stimulated by GPVI agonist, convulxin (160 ng/ml). Hinokitiol also decreased the association of GPVI and Lyn, and then inhibited GPVI signaling stimulated by convulxin. Based on the above findings, we suggest that hinokitiol inhibited the first step of GPVI signaling, the association of GPVI and Lyn, inhibiting Lyn activity, and the downstream of GPVI signaling molecules, including p38 MAPK, ERK, JNK, Akt, and PLCγ2. Finally, hinokitiol inhibited platelet activation and aggregation. Hinokitiol can interact with GPVI receptor specifically, and would term as an inhibitor of GPVI. It might have a great clinical potential as an anti-thrombotic drug. Thus, hinokitiol treatment may represent a novel approach to prevent or improving function in thromboembolism related disorders.

致謝………………………………………………… 2
中文摘要…………………………………………… 4
英文摘要…………………………………………… 6
縮寫表……………………………………………… 8
壹、緒論…………………………………………… 12
文獻回顧…………………………………………… 12
研究動機及目的…………………………………… 45
貳、材料與方法…………………………………… 46
實驗材料…………………………………………… 46
實驗方法…………………………………………… 53
數據分析…………………………………………… 64
參、結果…………………………………………… 65
肆、討論…………………………………………… 72
伍、結論…………………………………………… 81
陸、附圖…………………………………………… 82
柒、圖……………………………………………… 88
捌、參考文獻……………………………………… 101


Adam, F., Kauskot, A., Nurden, P., Sulpice, E., Hoylaerts, M. F., Davis, R. J., Rosa, J.-P., & Bryckaert, M. (2010). Platelet JNK1 is involved in secretion and thrombus formation. Blood, 115: 4083-4092.

Adam, F., Kauskot, A., Rosa, J.-P., & Bryckaert, M. (2008). Mitogen-activated protein kinases in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 6: 2007-2016.

Andrews, R. K., & Berndt, M. C. (2004). Platelet physiology and thrombosis. Thrombosis Research, 114: 447-453.

Andrews, R. K., Suzuki-Inoue, K., Shen, Y., Tulasne, D., Watson, S. P., & Berndt, M. C. (2002). Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein VI. Blood, 99: 4219-4221.

Arai, M., Yamamoto, N., Moroi, M., Akamatsu, N., Fukutake, K., & Tanoue, K. (1995). Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol, 89: 124-130.

Arias-Salgado, E. G., Haj, F., Dubois, C., Moran, B., Kasirer-Friede, A., Furie, B. C., Furie, B., Neel, B. G., & Shattil, S. J. (2005). PTP-1B is an essential positive regulator of platelet integrin signaling. J Cell Biol, 170: 837-845.

Arias-Salgado, E. G., Lizano, S., Sarkar, S., Brugge, J. S., Ginsberg, M. H., & Shattil, S. J. (2003). Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Natl Acad Sci U S A, 100: 13298-13302.

Arima, Y., Nakai, Y., Hayakawa, R., & Nishino, T. (2003). Antibacterial effect of {beta}-thujaplicin on staphylococci isolated from atopic dermatitis: relationship between changes in the number of viable bacterial cells and clinical improvement in an eczematous lesion of atopic dermatitis. J. Antimicrob. Chemother., 51: 113-122.

Asazuma, N., Wilde, J. I., Berlanga, O., Leduc, M., Leo, A., Schweighoffer, E., Tybulewicz, V., Bon, C., Liu, S. K., McGlade, C. J., Schraven, B., & Watson, S. P. (2000). Interaction of linker for activation of T cells with multiple adapter proteins in platelets activated by the glycoprotein VI-selective ligand, convulxin. Journal of Biological Chemistry, 275: 33427-33434.

Borsch-Haubold, A. G., Bartoli, F., Asselin, J., Dudler, T., Kramer, R. M., Apitz-Castro, R., Watson, S. P., & Gelb, M. H. (1998). Identification of the phosphorylation sites of cytosolic phospholipase A2 in agonist-stimulated human platelets and HeLa cells. Journal of Biological Chemistry, 273: 4449-4458.

Borsch-Haubold, A. G., Kramer , R. M., & Watson, S. P. (1995). Cytosolic phospholipase A2 is phosphorylated in collagen- and thrombin-stimulated human platelets independent of protein kinase C and mitogen-activated protein kinase. Journal of Biological Chemistry, 270: 25885-25892.

Borsch-Haubold, A. G., Kramer, R. M., & Watson, S. P. (1997). Phosphorylation and activation of cytosolic phospholipase A2 by 38-kDa mitogen-activated protein kinase in collagen-stimulated human platelets. European Journal of Biochemistry, 245: 751-759.

Barry, F. A., & Gibbins, J. M. (2002). Protein kinase B is regulated in platelets by the collagen receptor glycoprotein VI. Journal of Biological Chemistry, 277: 12874-12878.

Batuwangala, T., Leduc, M., Gibbins, J. M., Bon, C., & Jones, E. Y. (2004). Structure of the snake-venom toxin convulxin. Acta Crystallographica Section D, 60: 46-53.

Berlanga, O., Tulasne, D., Bori, T., Snell, D. C., Miura, Y., Jung, S., Moroi, M., Frampton, J., & Watson, S. P. (2002). The Fc receptor γ-chain is necessary and sufficient to initiate signalling through glycoprotein VI in transfected cells by the snake C-type lectin, convulxin. European Journal of Biochemistry, 269: 2951-2960.

Bori-Sanz, T., Inoue, K. S., Berndt, M. C., Watson, S. P., & Tulasne, D. (2003). Delineation of the region in the glycoprotein VI tail required for association with the Fc receptor γ-chain. Journal of Biological Chemistry, 278: 35914-35922.

Boylan, B., Chen, H., Rathore, V., Paddock, C., Salacz, M., Friedman, K. D., Curtis, B. R., Stapleton, M., Newman, D. K., Kahn, M. L., & Newman, P. J. (2004). Anti-GPVI-associated ITP: an acquired platelet disorder caused by autoantibody-mediated clearance of the GPVI/FcR{gamma}-chain complex from the human platelet surface. Blood, 104: 1350-1355.

Brash, A. R. (1999). Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274: 23679-23682.

Briddon, S. J., & Watson, S. P. (1999). Evidence for the involvement of p59fyn and p53/56lyn in collagen receptor signalling in human platelets. Biochem. J., 338: 203-209.

Bugaud, F., Nadal-Wollbold, F., Levy-Toledano, S., Rosa, J.-P., & Bryckaert, M. (1999). Regulation of c-Jun-NH2 terminal kinase and extracellular-signal regulated kinase in human platelets. Blood, 94: 3800-3805.

Burgering, B. M., & Coffer, P. J. (1995). Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. nature, 376: 599-602.

Byeon, S. E., Lee, Y. G., Kim, J.-C., Han, J. G., Lee, H. Y., & Cho, J. Y. (2008). Hinokitiol, a natural tropolone derivative, inhibits TNF-α production in LPS-activated macrophages via suppression of NF-κB. Planta Med, 74: 828-833.

Canobbio, I., Reineri, S., Sinigaglia, F., Balduini, C., & Torti, M. (2004). A role for p38 MAP kinase in platelet activation by von Willebrand factor. Thromb Haemost, 91: 102-110.

Chisty MM, N. M., Inaba T, Ishita K, Osanai A, Kamiya H. (2004). Transmission electron microscopy of Schistosoma mansoni cercariae treated with hinokitiol (beta-thujaplicin), a compound for potential skin application against cercarial penetration. Tohoku J Exp Med, 202: 63-67.

Cho, M. J., Pestina, T. I., Steward, S. A., Lowell, C. A., Jackson, C. W., & Gartner, T. K. (2002). Role of the Src family kinase Lyn in TXA2 production, adenosine diphosphate secretion, Akt phosphorylation, and irreversible aggregation in platelets stimulated with gamma-thrombin. Blood, 99: 2442-2447.

Clauser, S., & Cramer-Borde, E. (2009). Role of platelet electron microscopy in the diagnosis of platelet disorders. Semin Thromb Hemost, 35: 213-223.

Clemetson, J. M., Polgar, J., Magnenat, E., Wells, T. N. C., & Clemetson, K. J. (1999). The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcαR and the natural killer receptors. Journal of Biological Chemistry, 274: 29019-29024.

Coffey, M. J., Coles, B., Locke, M., Bermudez-Fajardo, A., Williams, P. C., Jarvis, G. E., & O''Donnell, V. B. (2004). Interactions of 12-lipoxygenase with phospholipase A2 isoforms following platelet activation through the glycoprotein VI collagen receptor. FEBS Letters, 576: 165-168.

Coffey, M. J., Jarvis, G. E., Gibbins, J. M., Coles, B., Barrett, N. E., Wylie, O. R. E., & O''Donnell, V. B. (2004). Platelet 12- lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis. Circ Res, 94: 1598-1605.

Dangelmaier, C., Jin, J., Daniel, J. L., Smith, J. B., & Kunapuli, S. P. (2000). The P2Y1 receptor mediates ADP-induced p38 kinase- activating factor generation in human platelets. European Journal of Biochemistry, 267: 2283-2289.

Davi, G., & Patrono, C. (2007). Platelet activation and atherothrombosis. N Engl J Med, 357: 2482-2494.

De Alwis, R., Fujita, K., Ashitani, T., & Kuroda, K. i. (2009). Volatile and non-volatile monoterpenes produced by elicitor-stimulated Cupressus lusitanica cultured cells. Journal of Plant Physiology, 166: 720-728.

De Virgilio, M., Kiosses, W. B., & Shattil, S. J. (2004). Proximal, selective, and dynamic interactions between integrin αIIbβ3 and protein tyrosine kinases in living cells. J Cell Biol, 165: 305-311.

Drickamer, K. (1993). Evolution of Ca2+-dependent animal lectins. Prog Nucleic Acid Res Mol Biol, 45: 207-232.

Du, X. (2007). Signaling and regulation of the platelet glycoprotein Ib-IX-V complex. Curr Opin Hematol, 14: 262-269.

Dutt, Y., Singh, R. P., & Katyal, M. (1969). Metal complexes with tropolones. Talanta, 16: 1369-1382.

Ema, M., Harazono, A., Fujii, S., & Kawashima, K. (2004). Evaluation of developmental toxicity of [beta]-thujaplicin (hinokitiol) following oral administration during organogenesis in rats. Food and Chemical Toxicology, 42: 465-470.

Erdtman, H., & Gripenberg, J. (1948). Antibiotic substances from the heart wood of Thuja Plicata Don. nature, 161: 719.

Ezumi, Y., Shindoh, K., Tsuji, M., & Takayama, H. (1998). Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor γ chain complex on human platelets. The Journal of Experimental Medicine, 188: 267-276.

Faili, A., Randon, J., Francischetti, I. M., Vargaftig, B. B., & Hatmi, M. (1994). Convulxin-induced platelet aggregation is accompanied by a powerful activation of the phospholipase C pathway. Biochem J, 298 ( Pt 1): 87-91.

Fan, X., Heijnen, C. J., van der Kooij, M. A., Groenendaal, F., & van Bel, F. (2009). The role and regulation of hypoxia-inducible factor-1[alpha] expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Research Reviews, 62: 99-108.

Farndale, R. W., Sixma, J. J., Barnes, M. J., & Groot, P. G. D. (2004). The role of collagen in thrombosis and hemostasis. Journal of Thrombosis and Haemostasis, 2: 561-573.

Fong, G.-H. (2009). Regulation of angiogenesis by oxygen sensing mechanisms. Journal of Molecular Medicine, 87: 549-560.

Francischetti, I. M., Carlini, C. R., & Guimaraes, J. A. (1998). Human platelets activation by convulxin is accompanied by tyrosyl- phosphorylation of PLCgamma2 and occurs independently of integrin αIIbβ3. Platelets, 9: 185-189.

Francischetti, I. M. B., Saliou, B., Leduc, M., R. Carlini, C., Hatmi, M., Randon, J., Faili, A., & Bon, C. (1997). Convulxin, a potent platelet-aggregating protein from Crotalus durissus terrificus venom, specifically binds to platelets. Toxicon, 35: 1217-1228.

Garcia, A., Quinton, T. M., Dorsam, R. T., & Kunapuli, S. P. (2005). Src family kinase-mediated and Erk-mediated thromboxane A2 generation are essential for vWF/GPIb-induced fibrinogen receptor activation in human platelets. Blood, 106: 3410-3414.

Garcia, A., Shankar, H., Murugappan, S., Kim, S., & Kunapuli, S. P. (2007). Regulation and functional consequences of ADP receptor-mediated ERK2 activation in platelets. Biochem J, 404: 299-308.

Gibbins, J. M. (2004). Platelet adhesion signalling and the regulation of thrombus formation. J Cell Sci, 117: 3415-3425.

Gross, B. S., Melford, S. K., & Watson, S. P. (1999). Evidence that phospholipase C-γ2 interacts with SLP-76, Syk, Lyn, LAT and the Fc receptor γ-chain after stimulation of the collagen receptor glycoprotein VI in human platelets. European Journal of Biochemistry, 263: 612-623.

Horii, K., Brooks, M. T., & Herr, A. B. (2009). Convulxin forms a dimer in solution and can bind eight copies of glycoprotein VI: implications for platelet activation. Biochemistry, 48: 2907-2914.

Horii, K., Kahn, M. L., & Herr, A. B. (2006). Structural basis for platelet collagen responses by the immune-type receptor glycoprotein VI. Blood, 108: 936-942.

Ido, Y., Muto, N., Inada, A., Kohroki, J., Mano, M., Odani, T., Itoh, N., Yamamoto, K., & Tanaka, K. (1999). Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Proliferation, 32: 63-73.

Inamori Y, S. S., Tsujibo H, Okabe T, Morita Y, Sakagami Y, Kumeda Y, Ishida N. (1999). Antimicrobial activity and metalloprotease inhibition of hinokitiol-related compounds, the constituents of Thujopsis dolabrata S. and Z. hondai MAK. Biol Pharm Bull, 22: 990-993.

Jackson, S. P. (2007). The growing complexity of platelet aggregation. Blood, 109: 5087-5095.

Jandrot-Perrus, M., Busfield, S., Lagrue, A.-H., Xiong, X., Debili, N., Chickering, T., Couedic, J.-P. L., Goodearl, A., Dussault, B., Fraser, C., Vainchenker, W., & Villeval, J.-L. (2000). Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood, 96: 1798-1807.

Jandrot-Perrus M, L. A., Leduc M, Okuma M, Bon C. (1998). Convulxin-induced platelet adhesion and aggregation: involvement of glycoproteins VI and IaIIa. Platelets, 9: 207-211.

Jandrot-Perrus, M., Lagrue, A.-H., Okuma, M., & Bon, C. (1997). Adhesion and activation of human platelets induced by convulxin involve glycoprotein VI and integrin α2β1. Journal of Biological Chemistry, 272: 27035-27041.

Jennings, L. K. (2009). Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost, 102: 248-257.

Jung, S. M., & Moroi, M. (1998). Platelets interact with soluble and insoluble collagens through characteristically different reactions. Journal of Biological Chemistry, 273: 14827-14837.

Jung, S. M., & Moroi, M. (2008). Platelet glycoprotein VI (pp. 53-63).

Jung, S. M., Sonoda, M., Tsuji, K., Jimi, A., Nomura, S., Kanaji, T., & Moroi, M. (2010). Are integrin α2β1, glycoprotein Ib and vWf levels correlated with their contributions to platelet adhesion on collagen under high-shear flow? Platelets, 21: 101-111.

Jurk, K., & Kehrel, B. E. (2005). Platelets: physiology and biochemistry. Semin Thromb Hemost, 31: 381-392.

Kato, K., Furihata, K., Cheli, Y., Radis-Baptista, G., & Kunicki, T. J. (2006). Effect of multimer size and a natural dimorphism on the binding of convulxin to platelet glycoprotein (GP)VI. Journal of Thrombosis and Haemostasis, 4: 1107-1113.

Kato, K., Kanaji, T., Russell, S., Kunicki, T. J., Furihata, K., Kanaji, S., Marchese, P., Reininger, A., Ruggeri, Z. M., & Ware, J. (2003). The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood, 102: 1701-1707.

Kauskot, A., Adam, F., Mazharian, A., Ajzenberg, N., Berrou, E., Bonnefoy, A., Rosa, J.-P., Hoylaerts, M. F., & Bryckaert, M. (2007). Involvement of the mitogen-activated protein kinase c-Jun NH2-terminal kinase 1 in thrombus formation. Journal of Biological Chemistry, 282: 31990-31999.

Kiefer, T. L., & Becker, R. C. (2009). Inhibitors of platelet adhesion. Circulation, 120: 2488-2495.

Kim, D.-S., Park, S.-H., Kwon, S.-B., Li, K., Youn, S.-W., & Park, K.-C. (2004). (−)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesisvia decreased MITF production. Archives of Pharmacal Research, 27: 334-339.

Kim, S., Jin, J., & Kunapuli, S. P. (2004). Akt activation in platelets depends on Gi signaling pathways. J Biol Chem, 279: 4186-4195.

Kim, S., Mangin, P., Dangelmaier, C., Lillian, R., Jackson, S. P., Daniel, J. L., & Kunapuli, S. P. (2009). Role of phosphoinositide 3-kinase β in glycoprotein VI-mediated Akt activation in platelets. Journal of Biological Chemistry, 284: 33763-33772.

Komaki N, W. T., Ogasawara A, Sato N, Mikami T, Matsumoto T. (2008). Antifungal mechanism of hinokitiol against Candida albicans. Biol Pharm Bull, 31: 735-737.

Kornecki, E., Niewiarowski, S., Morinelli, T. A., & Kloczewiak, M. (1981). Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glanzmann''s thrombasthenic platelets. J Biol Chem, 256: 5696-5701.

Kramer, R. M., Roberts, E. F., Strifler, B. A., & Johnstone, E. M. (1995). Thrombin induces activation of p38 MAP kinase in human platelets. Journal of Biological Chemistry, 270: 27395-27398.

Kramer, R. M., Roberts, E. F., Um, S. L., Borsch-Haubold, A. G., Watson, S. P., Fisher, M. J., & Jakubowski, J. A. (1996). p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Journal of Biological Chemistry, 271: 27723-27729.

Kroner, C., Eybrechts, K., & Akkerman, J. W. (2000). Dual regulation of platelet protein kinase B. J Biol Chem, 275: 27790-27798.

Kuijpers, M. J. E., Schulte, V., Bergmeier, W., Lindhout, T., Brakebusch, C., Offermanns, S., Fassler, R., Heemskerk, J. W. M., & Nieswandt, B. (2003). Complementary roles of glycoprotein VI and {alpha}2{beta}1 integrin in collagen-induced thrombus formation in flowing whole blood ex vivo. FASEB J., 17: 685-687.

Lagrue, A.-H., Francischetti, I. M. B., Guimaraes, J. A., & Jandrot- Perrus, M. (1999). Phosphatidylinositol 3''-kinase and tyrosine- phosphatase activation positively modulate convulxin-induced platelet activation. Comparison with collagen. FEBS Letters, 448: 95-100.

Leduc, M., & Bon, C. (1998). Cloning of subunits of convulxin, a collagen-like platelet-aggregating protein from Crotalus durissus terrificus venom. Biochem. J., 333: 389-393.

Lee, K. W., & Lip, G. Y. H. (2003). Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity: a systematic review. Arch Intern Med, 163: 2368-2392.

Lee, M. J., Kim, J. W., & Yang, E. G. (2010). Hinokitiol activates the hypoxia-inducible factor (HIF) pathway through inhibition of HIF hydroxylases. Biochemical and Biophysical Research Communications, 396: 370-375.

Li, Z., Xi, X., & Du, X. (2001). A mitogen-activated protein kinase-dependent signaling pathway in the activation of platelet integrin αIIbβ3. Journal of Biological Chemistry, 276: 42226- 42232.

Li, Z., Zhang, G., Liu, J., Stojanovic, A., Ruan, C., Lowell, C. A., & Du, X. (2010). An important role of the Src family kinase Lyn in stimulating platelet granule secretion. Journal of Biological Chemistry, 285: 12559-12570.

Liguori, P. F., Valentini, A., Palma, M., Bellusci, A., Bernardini, S., Ghedini, M., Panno, M. L., Pettinari, C., Marchetti, F., Crispini, A., & Pucci, D. (2010). Non-classical anticancer agents: synthesis and biological evaluation of zinc(ii) heteroleptic complexes. Dalton Transactions, 39: 4205-4212.

Liu, J., Pestina, T. I., Berndt, M. C., Jackson, C. W., & Gartner, T. K. (2005). Botrocetin/vWF-induced signaling through GPIb-IX-V produces TXA2 in an αIIbβ3- and aggregation-independent manner. Blood, 106: 2750-2756.

Liu, S., & Yamauchi, H. (2006). Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochemical and Biophysical Research Communications, 351: 26-32.

Locke, D., Liu, C., Peng, X., Chen, H., & Kahn, M. L. (2003). FcR gamma-independent signaling by the platelet collagen receptor glycoprotein VI. J Biol Chem, 278: 15441-15448.

Ma, Y.-Q., Qin, J., & Plow, E. F. (2007). Platelet integrin αIIbβ3: activation mechanisms. Journal of Thrombosis and Haemostasis, 5: 1345-1352.

Mangin, P., Nonne, C., Eckly, A., Ohlmann, P., Freund, M., Nieswandt, B., Cazenave, J. P., Gachet, C., & Lanza, F. (2003). A PLCγ2- independent platelet collagen aggregation requiring functional association of GPVI and integrin α2β1. FEBS Letters, 542: 53-59.

Maxwell, M. J., Yuan, Y., Anderson, K. E., Hibbs, M. L., Salem, H. H., & Jackson, S. P. (2004). SHIP1 and Lyn kinase negatively regulate integrin αIIbβ3 signaling in platelets. J Biol Chem, 279: 32196-32204.

Mazharian, A., Roger, S., Maurice, P., Berrou, E., Popoff, M. R., Hoylaerts, M. F., Fauvel-Lafeve, F., Bonnefoy, A., & Bryckaert, M. (2005). Differential involvement of ERK2 and p38 in platelet adhesion to collagen. Journal of Biological Chemistry, 280: 26002-26010.

Miura, Y., Ohnuma, M., Jung, S. M., & Moroi, M. (2000). Cloning and expression of the platelet-specific collagen receptor glycoprotein VI. Thrombosis Research, 98: 301-309.

Miyamoto, D., Kusagaya, Y., Endo, N., Sometani, A., Seiji, T., Suzuki, T., Arima, Y., Nakajima, K., & Yasuo, S. (1998). Thujaplicin- copper chelates inhibit replication of human influenza viruses. Antiviral Research, 39: 89-100.

Morita, Y., Matsumura, E., Okabe, T., Shibata, M., Sugiura, M., Ohe, T., Tsujibo, H., Ishida, N., & Inamori, Y. (2003). Biological activity of tropolone. Biological & Pharmaceutical Bulletin, 26: 1487-1490.

Moroi, M., & Jung, S. M. (2004). Platelet glycoprotein VI: its structure and function. Thrombosis Research, 114: 221-233.

Moroi, M., Jung, S. M., Okuma, M., & Shinmyozu, K. (1989). A patient with platelets deficient in glycoprotein VI that lack both collagen- induced aggregation and adhesion. The Journal of Clinical Investigation, 84: 1440-1445.

Murakami, M. T., Zela, S. P., Gava, L. M., Michelan-Duarte, S., Cintra, A. C. O., & Arni, R. K. (2003). Crystal structure of the platelet activator convulxin, a disulfide-linked α4β4 cyclic tetramer from the venom of Crotalus durissus terrificus. Biochemical and Biophysical Research Communications, 310: 478-482.

Mustard, J. F., Perry, D. W., Ardlie, N. G., & Packham, M. A. (1972). Preparation of suspensions of washed platelets from humans. Br J Haematol, 22: 193-204.

Nadal-Wollbold, F., Pawlowski, M., Levy-Toledano, S., Berrou, E., Rosa, J.-P., & Bryckaert, M. (2002). Platelet ERK2 activation by thrombin is dependent on calcium and conventional protein kinases C but not Raf-1 or B-Raf. FEBS Letters, 531: 475-482.

Nakano, Y., Wada, M., Tani, H., Sasai, K., & Baba, E. (2005). Effects of beta-thujaplicin on anti-Malassezia pachydermatis remedy for canine otitis externa. The Journal of Veterinary Medical Science, 67: 1243-1247.

Nie, D., & Honn, K. V. (2004). Eicosanoid regulation of angiogenesis in tumors. Semin Thromb Hemost, 30: 119-125.

Nieswandt, B., Brakebusch, C., Bergmeier, W., Schulte, V., Bouvard, D., Mokhtari-Nejad, R., Lindhout, T., Heemskerk, J. W. M., Zirngibl, H., & Fassler, R. (2001). Glycoprotein VI but not α2β1 integrin is essential for platelet interaction with collagen. EMBO J, 20: 2120-2130.

Nieswandt, B., Schulte, V., Bergmeier, W., Mokhtari-Nejad, R., Rackebrandt, K., Cazenave, J.-P., Ohlmann, P., Gachet, C., & Zirngibl, H. (2001). Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. The Journal of Experimental Medicine, 193: 459-470.

Nieswandt, B., & Watson, S. P. (2003). Platelet-collagen interaction: is GPVI the central receptor? Blood, 102: 449-461.

Nomiya, K., Yoshizawa, A., Tsukagoshi, K., Kasuga, N. C., Hirakawa, S., & Watanabe, J. (2004). Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. Journal of Inorganic Biochemistry, 98: 46-60.

Ono, M., Asai, T., & Watanabe, H. (1998). Hinokitiol production in a suspension culture of Calocedrus formosana Florin. Bioscience, Biotechnology, and Biochemistry, 62: 1653-1659.

Oury, C., Daenens, K., Hu, H., Toth-Zsamboki, E., Bryckaert, M., & Hoylaerts, M. F. (2006). ERK2 activation in arteriolar and venular murine thrombosis: platelet receptor GPIb vs. P2X1. Journal of Thrombosis and Haemostasis, 4: 443-452.

Oury, C., Toth-Zsamboki, E., Vermylen, J., & Hoylaerts, M. F. (2002). P2X1-mediated activation of extracellular signal-regulated kinase 2 contributes to platelet secretion and aggregation induced by collagen. Blood, 100: 2499-2505.

Papkoff, J., Chen, R. H., Blenis, J., & Forsman, J. (1994). p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol. Cell. Biol., 14: 463-472.

Pasquet, J. M., Bobe, R., Gross, B., Gratacap, M. P., Tomlinson, M. G., Payrastre, B., & Watson, S. P. (1999). A collagen-related peptide regulates phospholipase Cgamma2 via phosphatidylinositol 3-kinase in human platelets. Biochem J, 342 ( Pt 1): 171-177.

Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.-e., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 22: 153-183.

Pestina, T. I., Stenberg, P. E., Druker, B. J., Steward, S. A., Hutson, N. K., Barrie, R. J., & Jackson, C. W. (1997). Identification of the Src family kinases, Lck and Fgr in platelets. Their tyrosine phosphorylation status and subcellular distribution compared with other Src family members. Arterioscler Thromb Vasc Biol, 17: 3278-3285.

Phillips, D. R., Charo, I. F., & Scarborough, R. M. (1991). GPIIb-IIIa: the responsive integrin. Cell, 65: 359-362.

Quek, L. S., Pasquet, J.-M., Hers, I., Cornall, R., Knight, G., Barnes, M., Hibbs, M. L., Dunn, A. R., Lowell, C. A., & Watson, S. P. (2000). Fyn and Lyn phosphorylate the Fc receptor gamma chain downstream of glycoprotein VI in murine platelets, and Lyn regulates a novel feedback pathway. Blood, 96: 4246-4253.

Rathore, V. B., Okada, M., Newman, P. J., & Newman, D. K. (2007). Paxillin family members function as Csk-binding proteins that regulate Lyn activity in human and murine platelets. Biochem J, 403: 275-281.

Roger, S., Pawlowski, M., Habib, A., Jandrot-Perrus, M., Rosa, J.-P., & Bryckaert, M. (2004). Costimulation of the Gi-coupled ADP receptor and the Gq-coupled TXA2 receptor is required for ERK2 activation in collagen-induced platelet aggregation. FEBS Letters, 556: 227-235.

Ryo, R., Yoshida, A., Sugano, W., Yasunaga, M., Nakayama, K., Saigo, K., Adachi, M., Yamaguchi, N., & Okuma, M. (1992). Deficiency of p62, a putative collagen receptor, in platelets from a patient with defective collagen-induced platelet aggregation. Am J Hematol, 39: 25-31.

Saklatvala, J., Rawlinson, L., Waller, R. J., Sarsfield, S., Lee, J. C., Morton, L. F., Barnes, M. J., & Farndale, R. W. (1996). Role for p38 mitogen-activated protein kinase in platelet aggregation caused by collagen or a thromboxane analogue. Journal of Biological Chemistry, 271: 6586-6589.

Sakurai, K., Matsuo, Y., Sudo, T., Takuwa, Y., Kimura, S., & Kasuya, Y. (2004). Role of p38 mitogen-activated protein kinase in thrombus formation. Journal of Receptors and Signal Transduction, 24: 283-296.

Savage, B. P., Cattaneo, M. M. D., & Ruggeri, Z. M. M. D. (2001). Mechanisms of platelet aggregation. Current Opinion in Hematology, 8: 270-276.

Schmaier, A. A., Zou, Z., Kazlauskas, A., Emert-Sedlak, L., Fong, K. P., Neeves, K. B., Maloney, S. F., Diamond, S. L., Kunapuli, S. P., Ware, J., Brass, L. F., Smithgall, T. E., Saksela, K., & Kahn, M. L. (2009). Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role. Proceedings of the National Academy of Sciences, 106: 21167-21172.

Semple, J., & Freedman, J. (2010). Platelets and innate immunity. Cellular and Molecular Life Sciences, 67: 499-511.

Shattil, S. J. (2005). Integrins and Src: dynamic duo of adhesion signaling. Trends in Cell Biology, 15: 399-403.

Shattil, S. J., Ginsberg, M. H., & Brugge, J. S. (1994). Adhesive signaling in platelets. Current Opinion in Cell Biology, 6: 695-704.

Shattil, S. J., Kashiwagi, H., & Pampori, N. (1998). Integrin signaling: the platelet paradigm. Blood, 91: 2645-2657.

Shicheng, L., & Hitoshi, Y. (2009). p27-associated G1 arrest induced by hinokitiol in human malignant melanoma cells is mediated via down-regulation of pRb, Skp2 ubiquitin ligase, and impairment of Cdk2 function. Cancer letters, 286: 240-249.

Siljander, P. R.-M., Munnix, I. C. A., Smethurst, P. A., Deckmyn, H., Lindhout, T., Ouwehand, W. H., Farndale, R. W., & Heemskerk, J. W. M. (2004). Platelet receptor interplay regulates collagen- induced thrombus formation in flowing human blood. Blood, 103: 1333-1341.

Smyth, S. S., Mcever, R. P., Weyrich, A. S., Morrell, C. N., Hoffman, M. R., Arepally, G. M., French, P. A., Dauerman, H. L., & Becker, R. C. (2009). Platelet functions beyond hemostasis. Journal of Thrombosis and Haemostasis, 7: 1759-1766.

Song, S., Freedman, J., Mody, M., & Lazarus, A. H. (2000). Porcine von Willebrand factor and thrombin induce the activation of c-Jun amino-terminal kinase (JNK/SAPK) whereas only thrombin induces activation of extracellular signal-related kinase 2 (ERK2) in human platelets. British Journal of Haematology, 109: 851- 856.

Stokoe, D., Stephens, L. R., Copeland, T., Gaffney, P. R., Reese, C. B., Painter, G. F., Holmes, A. B., McCormick, F., & Hawkins, P. T. (1997). Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science, 277: 567-570.

Sugiyama, T., Okuma, M., Ushikubi, F., Sensaki, S., Kanaji, K., & Uchino, H. (1987). A novel platelet aggregating factor found in a patient with defective collagen-induced platelet aggregation and autoimmune thrombocytopenia. Blood, 69: 1712-1720.

Sundaresan, P., & Farndale, R. W. (2002). p38 mitogen-activated protein kinase dephosphorylation is regulated by protein phosphatase 2A in human platelets activated by collagen. FEBS Letters, 528: 139-144.

Suzuki-Inoue, K., Tulasne, D., Shen, Y., Bori-Sanz, T., Inoue, O., Jung, S. M., Moroi, M., Andrews, R. K., Berndt, M. C., & Watson, S. P. (2002). Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. Journal of Biological Chemistry, 277: 21561-21566.

Suzuki, H., Ueda, T., Juranek, I., Yamamoto, S., Katoh, T., Node, M., & Suzuki, T. (2000). Hinokitiol, a selective inhibitor of the platelet-type isozyme of arachidonate 12-lipoxygenase. Biochemical and Biophysical Research Communications, 275: 885-889.

Takahashi, H., & Moroi, M. (2001). Antibody against platelet membrane glycoprotein VI in a patient with systemic lupus erythematosus. Am J Hematol, 67: 262-267.

Toth-Zsamboki, E., Oury, C., Cornelissen, H., De Vos, R., Vermylen, J., & Hoylaerts, M. F. (2003). P2X1-mediated ERK2 activation amplifies the collagen-induced platelet secretion by enhancing myosin light chain kinase activation. Journal of Biological Chemistry, 278: 46661-46667.

Trust, T. J., & Coombs, R. W. (1973). Antibacterial activity of beta-thujaplicin. Canadian Journal of Microbiology, 19: 1341-1346.

Varga-Szabo, D., Pleines, I., & Nieswandt, B. (2008). Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol, 28: 403-412.

Vargaftig, B. B., Prado-Franceschi, J., Chignard, M., Lefort, J., & Marlas, G. (1980). Activation of guinea-pig platelets induced by convulxin, a substance extracted from the venom of Crotalus durissus cascavella. Eur J Pharmacol, 68: 451-464.

Watson, S. P., Asazuma, N., Atkinson, B., Berlanga, O., Best, D., Bobe, R., Jarvis, G., Marshall, S., Snell, D., Stafford, M., Tulasne, D., Wilde, J., Wonerow, P., & Frampton, J. (2001). The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thromb Haemost, 86: 276-288.

Watson, S. P., Auger, J. M., McCarty, O. J. T., & Pearce, A. C. (2005). GPVI and integrin αIIbβ3 signaling in platelets. Journal of Thrombosis and Haemostasis, 3: 1752-1762.

Weiss, H. (1975). Platelet physiology and abnormalities of platelet function (first of two parts). N Engl J Med, 293: 531-541.

Woulfe, D., Jiang, H., Morgans, A., Monks, R., Birnbaum, M., & Brass, L. F. (2004). Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. J Clin Invest, 113: 441-450.

Xiang, Y.-Z., Xia, Y., Gao, X.-M., Shang, H.-C., Kang, L.-Y., & Zhang, B.-L. (2008). Platelet activation, and antiplatelet targets and agents: current and novel strategies. Drugs, 68: 1647-1664.

Xu, C., Gagnon, E., Call, M. E., Schnell, J. R., Schwieters, C. D., Carman, C. V., Chou, J. J., & Wucherpfennig, K. W. (2008). Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell, 135: 702-713.

Xu, W., Harrison, S. C., & Eck, M. J. (1997). Three-dimensional structure of the tyrosine kinase c-Src. nature, 385: 595-602.

Yamamoto, S. (1992). Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta., 1128: 117-131.

Yamamoto, S., Katsukawa, M., Nakano, A., Hiraki, E., Nishimura, K., Jisaka, M., Yokota, K., & Ueda, N. (2005). Arachidonate 12-lipoxygenases with reference to their selective inhibitors. Biochemical and Biophysical Research Communications, 338: 122-127.

Yamano, H., Yamazaki, T., Sato, K., Shiga, S., Hagiwara, T., Ouchi, K., & Kishimoto, T. (2005). In vitro inhibitory effects of hinokitiol on proliferation of Chlamydia trachomatis. Antimicrob. Agents Chemother., 49: 2519-2521.

Yamato, M., Ando, J., Sakaki, K., Hashigaki, K., Wataya, Y., Tsukagoshi, S., Tashiro, T., & Tsuruo, T. (1992). Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting methylene chains. Journal of Medicinal Chemistry, 35: 267-273.

Yamato M, H. K., Kokubu N, Tsuruo T, Tashiro T. (1984). Synthesis and antitumor activity of tropolone derivatives. 1. Journal of Medicinal Chemistry, 27: 1749-1753.

Yeong-Gon, C., Eun-Jin, B., Dong-Seok, K., Seo-Hyoung, P., Sun-Bang, K., Jung-Im, N., & Kyoung-Chan, P. (2006). Differential regulation of melanosomal proteins after hinokitiol treatment. Journal of dermatological science, 43: 181-188.

Yin, H., Liu, J., Li, Z., Berndt, M. C., Lowell, C. A., & Du, X. (2008). Src family tyrosine kinase Lyn mediates vWF/GPIb-IX-induced platelet activation via the cGMP signaling pathway. Blood, 112: 1139-1146.

Yoshimoto, T., & Takahashi, Y. (2002). Arachidonate 12-lipoxygenases. Prostaglandins & Other Lipid Mediators, 68-69: 245-262.

Zarbock, A., Polanowska-Grabowska, R. K., & Ley, K. (2007). Platelet- neutrophil-interactions: linking hemostasis and inflammation. Blood Reviews, 21: 99-111.

Zhao, J., Fujita, K., & Sakai, K. (2005). Oxidative stress in plant cell culture a role in production of beta-thujaplicin by Cupresssus lusitanica suspension culture. Biotechnology and Bioengineering, 90: 621-631.

Zhao, J., Matsunaga, Y., Fujita, K., & Sakai, K. (2006). Signal transduction and metabolic flux of [beta]-thujaplicin and monoterpene biosynthesis in elicited Cupressus lusitanica cell cultures. Metabolic Engineering, 8: 14-29.

Zhao, J., Zheng, S.-H., Fujita, K., & Sakai, K. (2004). Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to {beta}-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J. Exp. Bot., 55: 1003-1012.

Zhao J., F. K., Sakai K. (2001). Production of beta-thujaplicin in Cupressus lusitanica suspension cultures fed with organic acids and monoterpenes. Biosci Biotechnol Biochem, 65: 1027-1032.

Zheng, Y.-M., Liu, C., Chen, H., Locke, D., Ryan, J. C., & Kahn, M. L. (2001). Expression of the platelet receptor GPVI confers signaling via the Fc receptor γ-chain in response to the snake venom convulxin but not to collagen. Journal of Biological Chemistry, 276: 12999-13006.

許薰云(2009)。Hinokitiol抑制血小板凝集作用之機轉探討。未出版碩士論文,臺北醫學大學,臺北市。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top