|
Table of Contents Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 3 1.3 Research objective 5 1.4 Structure of the thesis 7 Chapter 2 Literature Review 8 2.1 Data Mining 8 2.2 Classification of Data mining Techniques 9 2.2.1 Classification 9 2.2.2. Estimation 10 2.2.3. Prediction 11 2.3 Neural Network 12 2.4 Clustering 15 2.4.1 Self-organizing Map. 15 2.4.2 K-means 16 2.5 Data Mining in CRM 17 2.5.1 Customer Retention 17 Chapter 3 Experimental Setup 23 3.1 Experimental Architecture 23 3.2 Experimental Design 24 3.2 Datasets 26 3.3 Clustering and Classification Methods 28 3.4 Evaluation strategies 29 Chapter 4 Experimental Result & Analysis 31 4.1 The Baseline Model 31 4.2 SOM+ANN 32 4.3 ANN+ANN 33 4.4 Further Comparisons 34 4.4.1 The Comparison of Prediction Accuracy 35 4.4.2 Type I & II Errors 36 4.4.3 Paired t test 38 Chapter 5 Conclusion and Future work 40 5.1 Conclusion 40 5.2 Future work 41 Reference 42
Berry, M. J. A., & Linoff, G. S. (2003). Data mining Techniques: For Marketing, Sales, and Customer Support: John Wiley & Sons. Berson, A.,Smith, S. & Thearling, K. (2000). Building Data Mining Applications for CRM ,McGraw-Hill. Borgelt, C., & Berthold, M. R. (2002). Mining Molecular Fragments: Finding Relevant Substructures of Molecules. Paper presented at the IEEE International Conf. on Data Mining. Catledge, L., & Pitkow, J. (1995). Characterizing browsing strategies in the World Wide Web. Computer Networks and ISDN Systems, 27, 1065-1073. Coussement, K., & Poel, D. V. D. (2007). Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34, 313–327. Danielson, D. R. (2002). Web navigation and the behavioral effects of constantly visible site maps. Interacting with Computers, 14, 601-618. Fayyad, U., Piatetsky, S. G., & Smyth, P. (1996). From data mining to knowledge discovery: An Overview In Advances in Knowledge Discovery and Data Mining. Paper presented at the AAAI/MIT Press. Fayyad, U., & Uthurusamy, R. (1996). Data mining and knowledge discovery in databases. Communications of the ACM, 39, 24-27. Fu, Y., Shandu, K., & Shih, M. (1999). Fast clustering of web users based on navigation pattern. Paper presented at the SCI''99/ISAS''9, Orlando, USA. Greenberg, S., & Cockburn, A. (1999). Getting Back to Back: alternative behaviors for a Web browser’ s Back button. Paper presented at the The Fifth Annual Human Factors and the Web Conference. Han, J., & Kamber, M. (2000). Data Mining : Concepts and Techniques. San Francisco: Morgan Kaufmann. Han, J., & Kamber, M. (2001). Data mining: Concepts and Techniques. San Diego. Irene, S. Y., Kwan, F. J., & Wong, H. K. (2005). An e-customer behavior model with online analytical mining for internet marketing planning. Decision Support Systems, 41, 189– 204. Jain, A., Murty, M., & Flyn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31, 264–323. Keaveney, Susan M.,(1995) ,Customer Switching Behavior in Service Industries:An Exploratory Study. Journal of Marketing, 59 , 71-82. Kim, H. S., & Yoon, C. H. (2004). Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market. Telecommunications Policy, 28, 751–765. Kim, M., Park, M., & Jeong, D. (2004). The effects of customer satisfaction and switching barrier on customer loyalty in Korean mobile telecommunication services. Telecommunications Policy, 28, 145-159. Kohonen, T. (1990). The self-organizing map. IEEE, 1464-1480. Lefever, E., Hoste, V., & Fayruzov, T. (2007). AUG: A combined classification and clustering approach for web people disambiguation. Paper presented at the The 4th International Workshop on Semantic Evaluations. Li, H. F., Lee, S. Y., & Shan, M. K. (2004). On Mining Webclick Streams for Path Traversal Patterns. Paper presented at the WWW 2004. Li, H. F., Lee, S. Y., & Shan, M. K. (2006). DSM-PLW: Single-pass mining of path traversal patterns over streaming Web click-sequences. Computer Networks, 50, 1474–1487. Lia, C. T., & Tan, Y. H. (2006). Adaptive control of system with hysteresis using neural networks. Journal of Systems Engineering and Electronics 17, 163-167 MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the The 5th Berkeley Symposium on Mathematical Statistics and Probability. Mitra, S., & Acharya, T. (2003). Data mining : Multimedia, Soft Computing, and Bioinformatics: John Wiley & Sons. Piatetsky, S. P., & Frawley, W. J. (1991). Knowledge Discovery in Databases. Paper presented at the AAAI/MIT Press. Roiger, R. J., & Michael, W. G. (2003). Data mining: A tutorial-Based Primer: Addison-Wesley. Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in Society, 24, 483-502. Savasere, A., Omiecinski, E., & Navathe, S. (1995). An efficient algorithm for mining association rules in large databases. Paper presented at the International Conference on Very Large Databases. Tauscher, L. M., & Greenberg, S. (1997). How people revisit Web pages: empirical findings and implications for the design of history mechanisms. International Journal of Human-Computer Studies, 47, 94-137. Theusinger, C., & Huber, K. P. (2000). Analyzing the Footsteps of Your Customer. Tou, J. T., & Gonzalez, R. C. (1974). Pattern Recognition Principles: Addison-Wesley. Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Constrained K-Means clustering with background knowledge. Paper presented at the The 18th International Conference on Machine Learning. Zhang, X., Edwards, J., & Harding, J. (2007). Personalised online sales using web usage data mining. Computers in Industry, 58, 772–782.
|
|
Berry, M. J. A., & Linoff, G. S. (2003). Data mining Techniques: For Marketing, Sales, and Customer Support: John Wiley & Sons. Berson, A.,Smith, S. & Thearling, K. (2000). Building Data Mining Applications for CRM ,McGraw-Hill. Borgelt, C., & Berthold, M. R. (2002). Mining Molecular Fragments: Finding Relevant Substructures of Molecules. Paper presented at the IEEE International Conf. on Data Mining. Catledge, L., & Pitkow, J. (1995). Characterizing browsing strategies in the World Wide Web. Computer Networks and ISDN Systems, 27, 1065-1073. Coussement, K., & Poel, D. V. D. (2007). Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34, 313–327. Danielson, D. R. (2002). Web navigation and the behavioral effects of constantly visible site maps. Interacting with Computers, 14, 601-618. Fayyad, U., Piatetsky, S. G., & Smyth, P. (1996). From data mining to knowledge discovery: An Overview In Advances in Knowledge Discovery and Data Mining. Paper presented at the AAAI/MIT Press. Fayyad, U., & Uthurusamy, R. (1996). Data mining and knowledge discovery in databases. Communications of the ACM, 39, 24-27. Fu, Y., Shandu, K., & Shih, M. (1999). Fast clustering of web users based on navigation pattern. Paper presented at the SCI''99/ISAS''9, Orlando, USA. Greenberg, S., & Cockburn, A. (1999). Getting Back to Back: alternative behaviors for a Web browser’ s Back button. Paper presented at the The Fifth Annual Human Factors and the Web Conference. Han, J., & Kamber, M. (2000). Data Mining : Concepts and Techniques. San Francisco: Morgan Kaufmann. Han, J., & Kamber, M. (2001). Data mining: Concepts and Techniques. San Diego. Irene, S. Y., Kwan, F. J., & Wong, H. K. (2005). An e-customer behavior model with online analytical mining for internet marketing planning. Decision Support Systems, 41, 189– 204. Jain, A., Murty, M., & Flyn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31, 264–323. Keaveney, Susan M.,(1995) ,Customer Switching Behavior in Service Industries:An Exploratory Study. Journal of Marketing, 59 , 71-82. Kim, H. S., & Yoon, C. H. (2004). Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market. Telecommunications Policy, 28, 751–765. Kim, M., Park, M., & Jeong, D. (2004). The effects of customer satisfaction and switching barrier on customer loyalty in Korean mobile telecommunication services. Telecommunications Policy, 28, 145-159. Kohonen, T. (1990). The self-organizing map. IEEE, 1464-1480. Lefever, E., Hoste, V., & Fayruzov, T. (2007). AUG: A combined classification and clustering approach for web people disambiguation. Paper presented at the The 4th International Workshop on Semantic Evaluations. Li, H. F., Lee, S. Y., & Shan, M. K. (2004). On Mining Webclick Streams for Path Traversal Patterns. Paper presented at the WWW 2004. Li, H. F., Lee, S. Y., & Shan, M. K. (2006). DSM-PLW: Single-pass mining of path traversal patterns over streaming Web click-sequences. Computer Networks, 50, 1474–1487. Lia, C. T., & Tan, Y. H. (2006). Adaptive control of system with hysteresis using neural networks. Journal of Systems Engineering and Electronics 17, 163-167 MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the The 5th Berkeley Symposium on Mathematical Statistics and Probability. Mitra, S., & Acharya, T. (2003). Data mining : Multimedia, Soft Computing, and Bioinformatics: John Wiley & Sons. Piatetsky, S. P., & Frawley, W. J. (1991). Knowledge Discovery in Databases. Paper presented at the AAAI/MIT Press. Roiger, R. J., & Michael, W. G. (2003). Data mining: A tutorial-Based Primer: Addison-Wesley. Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in Society, 24, 483-502. Savasere, A., Omiecinski, E., & Navathe, S. (1995). An efficient algorithm for mining association rules in large databases. Paper presented at the International Conference on Very Large Databases. Tauscher, L. M., & Greenberg, S. (1997). How people revisit Web pages: empirical findings and implications for the design of history mechanisms. International Journal of Human-Computer Studies, 47, 94-137. Theusinger, C., & Huber, K. P. (2000). Analyzing the Footsteps of Your Customer. Tou, J. T., & Gonzalez, R. C. (1974). Pattern Recognition Principles: Addison-Wesley. Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Constrained K-Means clustering with background knowledge. Paper presented at the The 18th International Conference on Machine Learning. Zhang, X., Edwards, J., & Harding, J. (2007). Personalised online sales using web usage data mining. Computers in Industry, 58, 772–782.
|
| |