跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝一鳴
研究生(外文):Yi-Ming Shieh
論文名稱:奈米材料在液晶微透鏡上的應用
論文名稱(外文):Application of Nanoparticles-Induced Vertical Alignment on Liquid Crystal Microlens
指導教授:黃素真黃素真引用關係
指導教授(外文):Shie Chang Jeng
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:光電工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
中文關鍵詞:多面體矽氧烷寡聚合物液晶配向微透鏡
外文關鍵詞:&ampampnbspLiquid Crystal&ampampnbspalignmentmicrolensPOSS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:493
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的在探討奈米粒子-多面體矽氧烷寡聚合物 (Polyhedral Oligomeric Silsequioxanes;POSS)所產生的垂直配向行為與特性,並將其運用在液晶微透鏡元件的研製與開發。實驗發現將POSS奈米粒子加熱熔融 (Melting)並進行配向,可以改善直接摻混入液晶的配向機制所衍生相關問題,提供液晶配向更好的方向性及穩定性。光電量測部分主要利用檢測相位、穿透率、電容與電壓相依性的關係來判定在外加電壓作用下,奈米粒子對液晶分子的轉動影響,其中包括有對比度、響應時間以及錨定能等特性分析。同時藉由改變不同POSS官能基種類與製程條件等參數,做為分析POSS對於液晶提供配向機制之研究。此外我們嘗試將POSS奈米材料引致垂直配向技術與微滴法應用在平面微透鏡元件的開發中,藉由相關實驗製作得到焦距可隨電壓改變的液晶微透鏡,並量測相關透鏡之特性與焦距對電壓相依性的關係。
In this thesis, we investigated the nanoparticles of polyhedral oligomeric silsesquioxane (POSS), which can induce vertical alignment (VA). In our experimental, POSS nanoparticles were spin-coated on the ITO substrates, as well as then melted and rubbed to improve the shortcomings of POSS/LC mixture directly injected into cell. This spin-coated and rubbed POSS films can improve the preferred direction and stability of the director profiles of nematic liquid c rystals under the applied voltage. The electric and optical properties were investigated using the dependence of the phase retardation, transmittance, and capacitance measurements on the applied voltages, respectively, which can provide the detailed information of the impacts of POSS on the voltage-induced reorientation of the liquid crystal molecules.
The analysis includes the contrast, response time and anchonring energy, which critically depend on the different process conditions. In this work, we apply the different functional group of POSS and various process conditions to investigate the nanoparticles-induced alignment mechanism of liquid crystals. Furthermore nanoparticles-induced vertical alignment (NIVA) of the nematic liquid crystals (LC) was proposed to make a tunable liquid-crystal flat microlens with hybrid-aligned nematic (HAN) mode, which was fabricated using micro-dropping technique. The spatially varying director orientation and the lenslike distribution of refractive index appears in the NIVA LC layer with concentric non-uniform distribution of the refractive index was then formed. The focus effect and its voltage-dependent focal length of this flat LC lens were observed.
目錄
摘要........................................................ I
ABSTRACT................................................... II
致謝...................................................... III
目錄....................................................... IV
圖目錄..................................................... VI
表目錄...................................................... X
第一章 緒論..................................................1
1.1可變焦微透鏡簡介..........................................1
1.2液晶微透鏡簡介............................................4
第二章 液晶材料與配向技術...................................13
2.1液晶的分類...............................................13
2.2液晶的光學異向性.........................................15
2.3液晶的連續體彈性形變理論與介電異方性.................... 17
2.4 液晶配向相關理論........................................19
2.4.1 液晶配向..............................................19
2.4.2液晶配向技術...........................................22
2.4.3 POSS奈米粒子的配向....................................23
第三章 元件製作與量測原理...................................26
3.1 POSS/液晶盒製備.........................................27
3.1.1實驗材料...............................................27
3.1.2 液晶盒樣品製作........................................28
3.2元件相關量測.............................................31
3.2.1 表面能量測............................................31
3.2.2 原子力顯微鏡之量測....................................33
3.2.3偏光顯微鏡觀察.........................................33
3.2.4 電容對電壓量測........................................33
3.2.5 穿透率對電壓量測......................................35
3.2.6相位差量測.............................................36
3.2.7錨定能量測.............................................37
3.3 液晶微透鏡元件製作與聚焦特性量測........................42
3.3.1液晶微透鏡元件製作.....................................42
3.3.2 微透鏡元件的特性量測..................................44
第四章 實驗結果與討論.......................................47
4.1 AFM與接觸角量測.........................................47
4.2偏光顯微鏡觀測...........................................53
4.5 液晶盒P-V與錨定能量測...................................63
4.6 POSS於液晶微透鏡上的應用................................65
4.6.1 POM圖觀察.............................................66
4.6.2 干涉環觀察與焦距-電壓量測.............................69
第五章 結論與未來展望.......................................73
5.1 結論....................................................73
5.2 未來展望................................................74
參考文獻....................................................76
附錄一:POSS編號與相關參數..................................82
[1] Welters W J J, Fokkink L G J, “ Fast Electrically Switchable Capillary Effects, ” Langmuir, 14(7) , pp.535-1538, 1998.
[2] Y. J. Liu, H. T. Dai, X. W. Sun, and T. J. Huang, “Electrically switchable phase-type fractal zone plates and fractal photon sieves, ” Optics Express, Vol. 17, Issue 15, pp. 12418-12423, 2009.
[3] E.J. Tremblay, J. Rutkowski, I. Tamayo, R.A. Stacko, R.L. Morrisono, D. Combsc, J. Maderc, H.-C. Kim,U. Levy, Y. Fainman and J.E. Ford , “Ultra-Thin Folded Imager, ” Optical Society of America, 2005.
[4] B. Berge Varioptic, Lyon, FRANCE. Ecole Normale Superieure de Lyon, Lyon France, “Liquid Lens Technology, “ Principle Of Electrowetting Based Lenses And Applications To Imaging,” Proceedings of the MEMS 2005 conference, held in Miami, USA Jan 30- Feb,pp. 3, 2005.
[5] L. Saurei, J. Peseux, F. Laune and B. Berge, ” Tunable liquid lens based on electrowetting technology : principle, properties and applications, ” Proceedings of the 10th MicroOptics conference, Jena Germany, September pp.1-3 , 2004.
[6] C. Gabay, B. Berge, G. Dovillaire, S. Bucourt, ” Dynamic study of a Varioptic variable focal lens, ” Proceedings of SPIE, 8-9 July, 2002.
[7] L. Saurei, G. Mathieu , B. Berge, ” Design of an autofocus lens for VGA ? , “ CCD and CMOS sensors” proceedings of SPIE conference, September, 2003.
[8] B. Wang, M. Ye, and S. Sato, ” Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Vol. 43, Appl. Opt., pp.3412-3425, 2004.
[9] A. Gvbzdarev, G. E. Nevskaya, ”Comparison of homogeneously- and hibrid-aligned liquid crystal microlenses optical properties,” 4th international conference, Rpeie-98, pp.191~196, 1999.
[10] G. Nevskaya, A. Gvozdarev, ” Analysis of phase retardation profiles in liquid crystalmicrolenses with different nematic’s alignment, ” IEEE, pp.126~130, 2000.
[11] A. Gvozdarev, G. E. Nevskaya., “Optical properties of homeotropically-aligned liquid crystal microlenses, ” Mol.Cryst. Liq. Cryst., vol. 304, pp. 423428, 1997.
[12] A. Gvozdarev, G.E. Nevskaya., “Optical properties of liquid crystal microlenses with variable focus length,’’ Proc.of the First Korea-Russian International Symposium on Science and Technology KORUS'97, Ulsan, Korea, pp.3 04-3 07, 1997.
[13] A. Gvozdarev, G.E. Nevskaya., “Optical properties of homogeneously- and hibrid-aligned liquid crystal microlenses, ”Mol. Cryst. Liq. Cryst., 1999.
[14] H. Ren, Y.-H. Fan, and S.-T Wu, “Liquid-crystal microlens arrays using patterned polymer networks, ” OPTICS LETTERS , Vol. 29, No. 14, July 15, 2004.
[15] H. Ren and S.-T Wu, “Adaptive liquid crystal lens with large focal length tenability, ” Vol. 14, Opt. Express., pp.11292- 11298, 2006.
[16] Y.-H. Fan, H. Ren, and S. T Wu, “ Electrically switchable Fresnel lens using a polymer-separated composite film, ” Vol. 13, Opt. Express., p.4141-4147, 2005.
[17] J.-W Jung, S-K Park, S-B Kwon and J-H Kim, “ Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Jap. J. App. Phys., Vol. 43, No. 7A, pp. 4269–4272, 2004.
[18] V. Vorsusev and S. Kumar, “ Phase-Separated Composite Films for Liquid Crystal Displays,” Science, Vol. 283, pp.1903-1905, 1999.
[19] Q. Wang, Jung O. Park, M. Srinvasarao, L. Qiu and S. Kumar, “Control of Polymer Structures in Phase-Separated Liquid Crystal-Polymer Composite Systems, ” Jpn. J. Appl. Phys., Vol. 44, No. 5A , 2005.
[20] Q. Wang, B. Acharya, H. Choi, J.-H. Kim, S. Kumar, “ Different Limits of Phase Separation and Their Applications, ” Proc. SPIE 5003,81, 2003.
[21] Y.-H. Fan, H. Ren, and S.-T. Wu, “ Electrically switchable Fresnel lens using a polymer-separated composite film, ” Opt. Express Vol. 13, No. 11, 4141-4147, 2005.
[22] Q. Wang, R. Guo, Mohammad R. DAJ, S-W Kang, and S. Kumar , “ Flexible Plastic Displays Fabricated Using Phase-Separated Composite Films of Liquid Crystals, ” Jpn. J. Appl. Phys., Vol. 46, No. 1, 2007.
[23] Q. Wang, and S. Kumar, “ Submillisecond Switching of Nematic Liquid Crystal in Cells Fabricated by Anisotropic Phase-Separation of Liquid Crystal and Polymer Mixture, ” Applied Physics Letters, Vol. 86, No. 7, pp. 071119-1–3, 2005.
[24] J. H. Kim, V. Vorflusev and S. Kumar, “ Single glass substrate LCDs using a phase separated composite organic film method , ” Displays, 25, pp. 207, 2004
[25] T Qian,J, H Kim, S Kumar, P.L Taylor, “ Phase Separation Composite Films: Experiment and Theory,” Phys.Rev.E61, pp. 4007, 2000.
[26] H. Ren and S-T Wu, “ Tunable electronic lens using a gradient polymer network liquid crystal, ” Appl. Phys. Lett., Vol. 82, pp. 22-24, 2003.
[27] Q. Wang, R. Guo, J. H Kim and S. Kumar, “ Display and non-display applications of the phase-separated composite films method,”
[28] H. Ren, Y-H Fan, S. Gauza, S-T Wu, “ Tunable microlens arrays using polymer network liquid crystal , ” Optics Communications 230, pp.267–271, 2004.
[29] Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, S. Kobayashi, Appl. Phys. Lett. 81, 2845-2847, 2002.
[30] H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, S. Kobayashi, “ Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Doped with Palladium (Pd) Nanoparticles, ”Jap. J. Appl. Phys, Vol. 43, pp. 5425–5429, 2004.
[31] J. Thisayukta, H. Shiraki, Y. Sakai, T. Masumi, S. Kundu, Y. Shiraishi, N. Toshima, S. Kobayashi, “ Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Doped with Silver Nanoparticles ” Jap. J. Appl. Phys., Vol. 43, pp. 5430–5434, 2004.
[32] L. O. Dolgov, O. V. Yaroshchuk, “ Electrooptic properties of liquid crystals filled with silica nanoparticles of different sorts ” Colloid Polym Sci 282: 1403–1408, 2004.
[33] M. Nakamura, Y. Hashimoto, T. Shinomiya, S.Mizushima, “ Liquid crystal display device with fine particles in liquid crystal layer ” U.S. Patent No. 2005/0062927.
[34] S. C. Jeng, C.W. Kuo, H. L. Wang, C. C. Liao, “ Nanoparticles- Induced vertical alignment in liquid crystal cell ” Appl. Phys. Lett. 91, 061112, 2007.
[35] C.W. Kuo, S. C. Jeng, H. L. Wang, C. C. Liao, “ Application of nanoparticle-induced vertical alignment in hybrid-aligned nematic liquid crystal cell ” Appl. Phys. Lett. 91, 141103, 2007.
[36] 松本正一、角田市良 合著,劉瑞祥 譯,“ 液晶之基礎與應用”,國立編譯館出版, 1996.
[37] J. Cao and B. J. Berne, J. Chem. “ Theory of polarizable liquid crystals: Optical birefringence ” Phys, 99 (3), 1 August, 1993.
[38] F. C. Frank, “ I. Liquid crystals. On the theory of liquid crystals, ” Discuss. Faraday Soc., 1958, 25, 19, DOI: 10.1039/DF9582500019.
[39] J. M. Geary, J. W. Goodby , A. R. Kmetz, J. S. Patel, J. Appl. “ The mechanism of polymer alignment of liquid-crystal materials, ” Phys. vol.62, no.10, pp. 4100-4108, 1987.
[40] D. W. Berreman, “ Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal, ” Phys. Rev. Lett. 28, pp. 1683–1686, 1972.
[41] 陳福龍,” 液晶顯示器(LCD)之配向膜及配向技術”,工業材料,124期,pp. 106-116, 1997.
[42] J. A. Castellano, “ Surface Anchoring of Liquid Crystal Molecules on Various Substrates, ” Mol. Cryst. Liq. Cryst. vol. 94, 33-41 ,1983.
[43] J. L. Janning, “ Thin film surface orientation for liquid crystals, ” Appl. Phys. Lett. 21, pp. 173-174, 1972.
[44] W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, “ Surface-mediated alignment of nematic liquid crystals with polarized laser light, “ Nature, 351, 49, 1991.
[45] M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov, “ Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers, ” Jpn. J. Appl. Phys., 31, p.2155, 1992.
[46] M. Hasegawa, Y. Taria, Proceeding of IDRC 94, 78, 1994.
[47] T. Sugiyama, S. Kobayashi et al., “ Analytical Simulation of Electrooptical Performance of Multidomain Twisted Nematic Liquid Crystal Displays, ” Jpn. J. Appl, Phys., 34, p.2396, 1995.
[48] 市村國宏,“ 基板表面層分子による液晶配向の光制御, ” 表面, vol.32, pp. 671, 1994.
[49] P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki and Y. Shiota, “ Atomic-beam alignment of inorganic materials for liquid-crystal displays, ” Nature 411, 56 ,2001.
[50] P. Chaudhari, J. A. Lacey, S. C. A. Lien, J. L. Speidell, “Atomic Beam Alignment of Liquid Crystals” Jpn. J. Appl. Phys. 37, 55 ,1998.
[51] J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, J. L. Speidell, “ Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order “Science 292, p. 2299, 2001.
[52] V. V. Zhurin, H. R. Kaufman and R. S. Robinson, “ Physics of closed drift thrusters, ” Plasma Sources. 8, pp. 1–20 ,1999.
[53] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu and O. D. Lavrentovich, “ Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates, ” Liq. Cryst. 31, p.859, 2004.
[54] A. Lee, JD. Lichtenhan, “ Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems, ” Macromolecules, 31, pp.4970, 1998.
[55] G. Z. Li, L. Wang, H. Toghiani, T. L. Daulton, K. Koyana, Jr. CU. Pittman, “ Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends, ” Macromolecules, 34, 8686, 2001.
[56] J. Choi, A. F. Yee, R. M. Laine, “Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa (dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane” Macromolecules, Vol. 36, Issue 15, pp. 5666, 2003.
[57] J. Choi, A. F. Yee, R. M. Laine, “Toughening of Cubic Silsesquioxane Epoxy Nanocomposites Using Core−Shell Rubber Particles: A Three-Component Hybrid System, ” Macromolecules, Vol. 37, Issue 9, pp. 3267, 2004.
[58] R. K. Bharadwai, R. J. Berry, B. L. Farmer, “ Molecular dynamics simulation study of norbornene–POSS polymers, “ Polymer, 41, pp. 7209, 2000.
[59] B. X. Fu, L. Yang, R. H. Somani, S. X. Zong, B. S. Hsiao, S. Phillps, R. Blanski, P. Ruth, “ Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions, ” J. Polym. Sci. Polym. Phys., 39, 2727, 2001.
[60] S. C. Jeng, C.W. Kuo, H. L. Wang, C. C. Liao, “ Nanoparticles- induced vertical alignment in liquid crystal cell, ” Appl. Phys. Lett. 91, 061112, 2007.
[61] S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo and C. C. Liao, “ Characteristics of nanoparticle-doped homeotropic liquid crystal devices, ” J. Phys. D: Appl. Phys. 42, 025102 pp. 6, 2009.
[62] S. C. Jeng, S. J. Hwang, and C. Y. Yang, “ Tunable Pretilt Angles Based on Nanoparticles-Doped Planar Liquid Crystal Cells, ” Optics Letter, 34, pp.455-457, 2009.
[63] Sigma-Aldrich Corp., St. Louis, MO, USA.
[64] Bico, J., C. Marzolin, and D. Quere, “Pearl drops,” Europhys. Lett.,Vol. 47(2),pp. 220-226, 1999.
[65] L. T. Creagh and A. R. Kmetz, “Mechanism of Surface Alignment in Nematic Liquid Crystals” Mol. Cryst. &; Liq. Cryst. 24, pp. 24, 1973.
[66] Shalel-Levanon S, Marmur A, “Validity and accuracy in evaluating surface tension of solids by additive approaches” Journal of Colloid and Interface Science,262(2), pp.489-499, 2003.
[67] Neumann, A. W. Adu. Colloid Interface Sci., 4, 1, 1974.
[68] M. G. Robinson, J. Chen, and G. D. Sharp, “ Polarization Engineering for LCD Projection, ” John Wiley &; Sons, Ltd.
[69] X Nie, Y-H Lin, T X. Wu, H Wang, and Z Ge, S-T Wu, “ Polar anchoring energy measurement of vertically aligned liquid-crystal cells, ” JOURNAL OF APPLIED PHYSICS, 98, 013516, 2005.
[70]C. C. Cheng, C. A. Chang and J.A. Yeh, “ A Tunable Concave Microlens with Hybird Alignment in Liquid Crystal, ” IEEE, 0-7803-9278-7, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top