|
[1]C. F. Shih, W. M. Li, M. M. Lin, K. T. Hong, C. Y. Hsiao, and C. L. Lee, “Sintering of ZnO and TiO2 nanostructures,” Electrochem. Solid St., 11 (2008) K105-K108. [2]H. T. Kim, J. D. Byun, and Y. Kim, “Microstructure and microwave dielectric properties of modified zinc titanates (II),” Mater. Res. Bull., 33 (1998) 975-986. [3]N. Obradovic, S. Filipovic, V. Pavlovic, V. Paunovic, M. Mitric, and M. M. Ristic, “Structural and electrical properties of sintered barium-zinc-titanate ceramics,” Acta. Phys. Pol. A, 120 (2011) 322-325. [4]W. H. Lu, Y. C. Lee, and P. R. Tsai, “Effect of sintering parameters on silver diffusion of (Zn,Mg)TiO3 based multilayer ceramic capacitors,” Adv. Appl. Ceram., 110 (2011) 99-107. [5]Z. S. Hong, M. D. Wei, Q. X. Deng, X. K. Ding, L. L. Jiang, and K. M. Wei, “A new anode material made of Zn2Ti3O8 nanowires: synthesis and electrochemical properties,” Chem. Commun., 46 (2010) 740-742. [6]O. Yamamoto, Y. Takeda, R. Kanno, and M. Noda, “Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells,” Solid State Ionics, 22 (1987) 241-246. [7]J. H. Swisher, J. Yang, and R. P. Gupta, “Attrition-resistant zinc titanate sorbent for sulfur,” Ind. Eng. Chem. Res., 34 (1995) 4463-4471. [8]R. P. Gupta and W. S. O’Brien, “Desulfurization of hot syngas containing hydrogen chloride vapors using zinc titanate sorbents,” Ind. Eng. Chem. Res., 39 (2000) 610-619. [9]H. Obayashi, Y. Sakurai, and T. Gejo, “Perovskite-type oxides as ethanol sensors,” J. Solid State Chem., 17 (1976) 299-303. [10]B. C. Yadav, A. Yadav, S. Singh, and K. Singh, “Nanocrystalline zinc titanate synthesized via physicochemical route and its application as liquefied petroleum gas sensor,” Sensor. Actuat. B-chem., 177 (2013) 605-611. [11]P. Das, R. J. Butcher, and C. Mukhopadhyay, “Zinc titanate nanopowder: an advanced nanotechnology based recyclable heterogeneous catalyst for the one-pot selective synthesis of self-aggregated low-molecular mass acceptor-donor-acceptor-acceptor systems and acceptor-donor-acceptor triads,” Green Chem., 14 (2012) 1376-1387. [12]J. C. Conesa, “Band structures and nitrogen doping effects in zinc titanate photocatalysts,” Catal. Today, 208 (2013) 11-18. [13]S. F. Bartram and R. A. Slepetys, “Compound formation and crystal structure in the system ZnO-TiO2,” J. Am. Ceram. Soc., 44 (1961) 493-499. [14]F. H. Dulin and D. E. Rase, “Phase equilibria in the system ZnO-TiO2,” J. Am. Ceram. Soc., 43 (1960) 125-131. [15]O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceramic Soc., 70 (1987) C97-C98. [16]S. Sedpho, D. Wongratanaphisan, P. Mangkorntong, N. Mangkorntong, and S. Choopun, “Preparation and characterization of zinc titanate nanostructures by oxidation reaction technique,” J. Nat. Sci., 7 (2008) 99-104. [17]H. T. Kim, S. Nahm, J. D. Byun, and Y. Kim, “Low-fired (Zn,Mg)TiO3 microwave dielectrics,” J. Am. Ceram. Soc., 82 (1999) 3476-3480. [18]C. L. Wang, W. S. Hwang, K. M. Chang, H. H. Ko, C. S. Hsi, H. H. Huang, and M. C. Wang, ” Formation and morphology of Zn2Ti3O8 powders using hydrothermal process without dispersant agent or mineralizer,” Int. J. Mol. Sci., 12 (2011) 935-945. [19]H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. H. Kim, “Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron,” J. Am. Ceram. Soc., 82 (1999) 3043-3048. [20]K. Haga, T. Ishii, J. I. Mashiyama, and T. Ikeda, “Dielectric Properties of Two-Phase Mixture Ceramics Composed of Rutile and Its Compounds,” Jpn. J. Appl. Phys., 31 (1992) 3156-3159. [21]M. R. Mohammadi and D. J. Fray, “Low temperature nanostructured zinc titanate by an aqueous particulate sol-gel route: optimisation of heat treatment condition based on Zn:Ti molar ratio,” J. Eur. Ceram. Soc., 30 (2010) 947-961. [22]Y. S. Chang, Y. H. Chang, I. G. Chen, G. J. Chen, Y. L. Chai, T. H. Fang, and S. Wu, “Synthesis, formation and characterization of ZnTiO3 ceramics,” Ceram. Int., 30 (2004) 2183-2189. [23]Y. Inaguma, A. Aimi, Y. Shirako, D. Sakurai, D. Mori, H. Kojitani, M. Akaogi, and M. Nakayama, “High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect,“ J. Am. Chem. Soc., 136 (2014) 2748-2756. [24]H. K. Jun, T. J. Lee, S. O. Ryu, and J. C. Kim, ”A study of Zn-Ti-based H2S removal sorbents promoted with cobalt oxides,” Ind. Eng. Chem. Res., 40 (2001) 3547-3556. [25]L. Alonso, J. M. Palacios, and R. Moliner, “The performance of some ZnO-based regenerable sorbents in hot coal gas desulfurization long-term tests using graphite as a pore-modifier additive,” Energ. Fuel., 15 (2001) 1396-1402. [26]M. Pineda, J. L. G. Fierro, J. M. Palacios, C. Cilleruelo, E. Garcia, and J. V. Ibarra, “Characterization of zinc oxide and zinc ferrite doped with Ti or Cu as sorbents for hot gas desulphurization,” Appl. Surf. Sci., 19 (1997) 1-10. [27]Y. C. Lee, Y. L. Huang, W. H. Lee, and F. S. Shieu, Formation and transformation of ZnTiO3 prepared by sputtering process,” Thin Solid Films, 518 (2010) 7366-7371. [28]L. G. Teoh, W. H. Lu, T. H. Lin, and Y. C. Lee, “The effect of Mg dopant and oxygen partial pressure on microstructure and phase transformation of ZnTiO3 thin films,” J. Nanomater., 2012 (2012) 1-8. [29]Y. C. Lee and P. S. Chen, “Effect of Cu dopant on microstructure and phase transformation of ZnTiO3 thin films prepared by radio frequency magnetron sputtering,” Thin Solid Films, 520 (2012) 2672-2678. [30]C. Ye, Y. Wang, Y. Ye, J. Zhang, and G. H. Li, “Preparation and photoluminescence of undoped ZnTiO3 thin films,” J. Appl. Phys., 106 (2009) 033520. [31]Y. L. Chai, Y. S. Chang, G. J. Chen, and Y. J. Hsiao, “The effects of heat-treatment on the structure evolution and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process,” Mater. Res. Bull., 43 (2008) 1066-1073. [32]C. F. Shih, W. M. Li, M. M. Lin, and K. T. Hung, “Zinc titanates sintered from ZnO and TiO2 nanowires prepared by a hydrothermal process,” J. Electrochem. Soc., 156 (2009) E13-E17. [33]C. F. Shih, W. M. Li, M. M. Lin, C. Y. Hsiao, and K. T. Hung, “Low-temperature sintered Zn2TiO4: TiO2 with near-zero temperature coefficient of resonant frequency at microwave frequency,” J. Alloy Compd., 485 (2009) 408-412. [34]H. T. Kim, Y. Kim, M. Valant and D. Suvorov, “Titanium incorporation in Zn2TiO4 spinel ceramics,” J. Am. Ceram. Soc., 84 (2001) 1081-1086. [35]Y. Matsumoto, “Energy positions of oxide semiconductors and photocatalysis with iron complex oxides,” J. Solid State Chem., 126 (1996) 227-234. [36]J. S. Jang, P. H. Borse, J. S. Lee, K. T. Lim, O. S. Jung, E. D. Jeong, J. S. Bae, M. S. Won, and H. G. Kim, “Energy band structure and photocatalytic property of Fe-doped Zn2TiO4 material,” Bull. Korean Chem. Soc., 30 (2009) 3021-3024. [37]X. J. Qin, L. Cui, and G. J. Shao, “Preparation of ZnO-Zn2TiO4 sol composite films and its photocatalytic activities,” J. Nanomater., 2012 (2013) 1-5. [38]N. T. Nolan, M. K. Seery, and S. C. Pillai, “Crystallization and phase-transition characteristics of sol-gel-synthesized zinc titanates,” Chem. Mater., 23 (2011) 1496-1504. [39]U. Steinike and B. Wallis, “Formation and structure of Ti-Zn-oxides,” Cryst. Res. Technol., 32 (1997) 187-193. [40]C. H. Ong and H. Gong, “Effects of aluminum on the properties of p-type Cu-Al-O transparent oxide semiconductor prepared by reactive co-sputtering,” Thin Solid Films, 445 (2003) 299-303. [41]K. M. Reddy, R. Benson, J. Hays, A. Thurber, M. H. Engelhard, V. Shutthanandan, R. Hanson, W. B. Knowlton, and A. Punnoose, “On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by reactive co-sputtering,” Sol. Energ. Mat. Sol. C., 91 (2007) 1496-1502. [42]D. Singh, S. Singh, U. Kumar, R. S. Srinivasa, and S. S. Major, “Transparent conducting Ga-doped ZnO thin films grown by reactive co-sputtering of Zn and GaAs,” Thin Solid Films, 555 (2014) 126-130. [43]Y. C. Lee and W. H. Lee, “Effects of glass addition on microwave dielectric properties of Zn0.95Mg0.05TiO3 + 0.25TiO2 Ceramics,” Jpn. J. Appl. Phys., 44 (2005) 1838-1843. [44]J. Yang and J. H. Swisher, “The phase stability of Zn2Ti3O8,” Mater. Charact., 37 (1996) 153-159. [45]Y. C. Lee, C. S. Chiang, and Y. L. Huang, “Microwave dielectric properties and microstructures of Nb2O5-Zn0.95Mg0.05TiO3 + 0.25TiO2 ceramics with Bi2O3 addition,” J. Eur. Ceram. Soc., 30 (2010) 963-970. [46]X. C. Liu, M. Zhao, F. Gao, L. L. Zhao, and C. S. Tian, “Effects of WO3 additions on the phase structure and transition of zinc titanate ceramics,” J. Alloy Compd., 450 (2008) 440-445. [47]Y. L. Chai, Y. S. Chang, L. G. Teoh, Y. J. Lin, and Y. J. Hsiao, “ Influence of ZrO2 addition on the structure, thermal stability, and dielectric properties of ZnTiO3 ceramics,“ J. Mater. Sci., 43 (2008) 6771-6776. [48]B. Li, Z. X. Yue, L. T. Li, J. Zhou, Z. L. Gui, “ Low-fired microwave dielectrics in ZnO-TiO2 ceramics doped with CuO and B2O3,“ J. Mater. Sci.-Mater. El., 13 (2002) 415-418. [49]X. C. Liu, F. Gao, L. L. Zhao, and C. S. Tian, “ Low-temperature sintering and phase transition of zinc titanate ceramics with V2O5 and B2O3 addition,“ J. Alloy Compd., 436 (2007) 285-289. [50]S. Butee, A. R. Kulkarni, O. Prakash, R. P. R. C. Aiyar, K. Sudheendran, and K. C. R. James, “R.F. and microwave dielectric properties of (Zn0.95M0.05)2TiO4 (M = Mn2+, Co2+, Ni2+ or Cu2+) ceramics,“ Mater. Sci. Eng. B-Adv., 168 (2010) 151-155. [51]H. T. Kim and M. T. Lanagan, “Structure and microwave dielectric properties of (Zn1-xCox)TiO3 ceramics,“ J. Am. Ceram. Soc., 86 (2003) 1874-1878. [52]H. T. Kim, J. C. Hwang, J. H. Nam, B. H. Choi, and M. T. Lanagan, “Structure and microwave dielectric properties of (Zn1-xNix)TiO3 ceramics,“ J. Mater. Res., 18 (2003) 1067-1072. [53]J. Luo, X. R. Xing, R. B. Yu, Q. F. Xing, D. F. Zhang, and X. R. Chen, “Synthesis and characterization of (Zn, Co)TiO3 by modified low temperature preparing route,“ J. Alloy Compd., 402 (2005) 263-268. [54]K. P. Surendran, N. Santha, P. Mohanan, and M.T. Sebastian, “Temperature stable low loss ceramic dielectrics in (1-x)ZnAlO-xTiO system for microwave substrate applications,” Eur. Phys. J. B., 41 (2004) 301-306. [55]S. M. Rossnagel, “Sputtering and sputter deposition,” in: K. Seshan, “Handbook of Thin Film Deposition,” William Andrew, Norwich, (2002) 319-348. [56]S. M. Rossnagel, “Thin film deposition with physical vapor deposition and related technologies,” J. Vac. Sci. Technol. A, 21 (2003) S74. [57]S. M Rossnagel, “Sputter deposition for semiconductor manufacturing,” IBM J. Res. Dev., 43 (1999) 163-179. [58]D. Chapman, “Sputtering and Plasma Etching,” Wiley-Interscience, New York, (1980). [59]J. S. Jung, Y. H. Kim, S. K. Gil, and D. H. Kang, “Dielectric properties of zinc titanate thin films prepared by Rf magnetron sputtering,” J. Electroceram., 23 (2009) 272-276. [60]A. Golovchansky, H. T. Kim, and Y. Kim, “Zinc titanates dielectric ceramics prepared by sol-gel process,” J. Korean Phy. Soc., 32 (1998) S1167-S1169. [61]Y. C. Lee, W. H. Lee, and F. T. Shiao, “Microwave dielectric properties of Zn0.95Mg0.05TiO3 + 0.25TiO2 ceramics with 3ZnO-B2O3 addition,” Jap. J. Appl. Phys., 43 (2004) 7596-7599. [62]Y. R. Wang, S. F. Wang, and Y. M. Lin, “Low temperature sintering of (Zn1-xMgx)TiO3 microwave dielectrics,” Ceram. Int., 31 (2005) 905-909. [63]B. Li, S. Zhang, Y. Yuan, X. H. Zhou, and L. C. Xiang, “Dielectric properties and microstructure of TiO2 modified (ZnMg)TiO3 microwave ceramics with CaO-B2O3-SiO2,” J. Mater. Sci., 44 (2009) 4993-4998. [64]S. P. Wu, J. H. Luo, and S. X. Cao, “Microwave dielectric properties of B2O3-doped ZnTiO3 ceramics made with sol-gel technique,” J. Alloy Compd., 502 (2010) 147-152. [65]D. W. Chen and A. K. Ray, “Photodegradation kinetics of 4-nitrophenol in TiO2 suspension,” Water Res., 32 (1998) 3223-3234. [66]A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal. B-Environ., 31 (2001) 145-157. [67]S. K. Kim, S. Y. Jeong, and C. R. Cho, “Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing,” Appl. Phys. Lett., 82 (2003) 562-564. [68]Z. Liu, D. Zhou, S. Gong, and H. Li, “Studies on a basic question of zinc titanates,” J. Alloy Compd., 475 (2009) 840-845. [69]H. P. Klug and L. E. Alexander, “X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials,” John Wiley & Sons, New York, (1974). [70]A. J. Moulson and J. M. Herbert, “Electroceramics: Materials, Properties, Application,” Chapman and Hall, London, (1990). [71]J. Cagnon, D. S. Boesch, N. H. Finstrom, S. Z. Nergiz, S. P. Keane, and S. Stemmer, “Microstructure and dielectric properties of pyrochlore Bi2Ti2O7 thin films,” J. Appl. Phys., 102 (2007) 044102. [72]C. Elissalde and J. Ravez, “Ferroelectric ceramics: Defects and dielectric relaxations,” J. Mater. Chem., 11 (2001) 1957-1967. [73]W. Q. Cao, J. W. Xiong, and J. P. Sun, “Dielectric behavior of Nb-doped Ba(ZrxTi1-x)O3,” Mater. Chem. Phys., 106 (2007) 338-342. [74]R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta. Cryst., A32 (1976) 751-767. [75]H. L. An and H. J. Ahn, “Fabrication of wrinkled Nb-doped TiO2 nanofibres via electrospinning,” Mater. Lett., 93 (2013) 88-91. [76]D. Y. Lee, J. T. Kim, J. H. Park, Y. H. Kim, I. K. Lee, M. H. Lee, and B. Y. Kim, “Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating,” Curr. Appl. Phys., 13 (2013) 1301-1305. [77]J. D. Bobic, M. M. V. Petrovic, J. Banys, and B. D. Stojanovic, “Electrical properties of niobium doped barium bismuth-titanate ceramics,” Mater. Res. Bull., 47 (2012) 1874-1880. [78]J. K. Kim, J. H. Kim, T. K. Song, and S. S. Kim, “Effects of niobium doping on microstructures and ferroelectric properties of bismuth titanate ferroelectric thin films,” Thin Solid Films, 419 (2002) 225-229. [79]J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, and J. R. Morante, “Effects of Nb doping on the TiO2 anatase-to-rutile phase transition,” J. Appl. Phys., 92 (2002) 853-861. [80]J. Y. Kim, H. S. Jung, J. H. No, J. R. Kim, and K. S. Hong, “Influence of anatase-rutile phase transformation on dielectric properties of sol-gel derived TiO2 thin films,” J. Electroceram., 16 (2006) 447-451. [81]V. V. Daniel, “Dielectric Relaxation,” Academic Press, London, NewYork, (1967). [82]R. Varatharajan, S. Madeswaran, and R. Jayavel, “Nb:BST: Crystal growth and ferroelectric properties,” J. Cryst. Growth, 225 (2001) 484-488. [83]Y. Yang, R. Scholz, H. J. Fan, D. Hesse, U. Gosele, and M. Zacharias, “Multitwinned spinel nanowires by assembly of nanobricks via oriented attachment: A case study of Zn2TiO4,” Acs Nano, 3 (2009) 555-562. [84]Y. Yang, X. W. Sun, B. K. Tay, J. X. Wang, Z. L. Dong, and H. M. Fan, “Twinned Zn2TiO4 Spinel nanowires using ZnO nanowires as a template,” Adv. Mater., 19 (2007) 1839-1844. [85]A. Asthana, K. Momeni, A. Prasad, Y. K. Yap, and R. S. Yassar, “On the correlation of crystal defects and band gap properties of ZnO nanobelts,” Appl. Phy. A-Mater., 105 (2011) 909-914. [86]H. Lin, S. Kumom, H. Kozuka, and Y. Yoko, “Electrical properties of gol-gel-derived transparent titania films doped with ruthenium and tantalum,” Thin solid films, 315 (1998) 266-272. [87]A. S. Barnard and P. Zapol “Effect of particle morphology and surface hydrogenation on the phase stability of TiO2,” Phys. Rev. B, 70 (2004) 235403. [88]J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B, 15 (1966) 627-637. [89]H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, “The effect of annealing on structural, electric and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull., 42 (2007) 487-496. [90]S. A. Mayen-Hernandez, G. Torres-Delgado, R. Castanedo-Perez, M. G. Villarreal, A. Cruz-Orea, J. G. M. Alvarez, and O. Zelaya-Angel, “Optical and structural properties of ZnO + Zn2TiO4 thin films prepared by the sol-gel method,” J. Mater. Sci.: Mater. Electron., 18 (2007) 1127-1130. [91]Y. B. Li, Y. Bando, T. Sato, and K. Kurashima, “ZnO nanobelts grown on Si substrate,” Appl. Phys. Lett., 81 (2002) 144-146. [92]H. Y. Peng, M. D. McCluskey, Y. M. Gupta, M. A. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B, 71 (2005) 115207. [93]K. Nishidate and M. Hasegawa, “Universal band gap modulation by radial deformation in semiconductor single-walled carbon nanotubes,” Phys. Rev. B, 78 (2008) 195403. [94]S. D. Mahanti, K. Hoang, and S. Ahmad, “Deep defect states in narrow band-gap semiconductors,” Physica. B, 401 (2007) 291-295. [95]E.G. Bylander, “Surface effects on the low‐energy cathodoluminescence of zinc oxide,” J. Appl. Phys., 49 (1978) 1188. [96]K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voiget, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett., 68 (1996) 403. [97]M. Liu, A. H. Kitai, and P. Mascher, “Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese,” J. Lumin., 54 (1992) 35-42. [98]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev., 95 (1995) 69-96. [99]J. Lin, J. C. Yu, D. Lo, and S. K. Lam, “Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions,” J. Catal., 183 (1999) 368-372. [100]Z. Zhang, C. C. Wang, R. Zakaria, and Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” J. Phys. Chem. B, 102 (1998) 10871-10878. [101]A. Chowdhury, A. Kudo, T. Fujita, M. W. Chen, and T. Adschiri, “Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesised by hydrothermal reaction in water-ethanol mixture,” J. Supercrit. Fluid., 58 (2011) 136-141. [102]S. H. Hyun and B. S. Kang, “Synthesis of titania composite membranes by the pressurized sol-gel technique,” J. Am. Ceram. Soc., 79 (1996) 279-282. [103]A. Kermanpur, E. Ghassemali, and S. Salemizadeh, “Synthesis and characterisation of microporous titania membranes by dip-coating of anodised alumina substrates using sol-gel method,” J. Alloys Compd., 461 (2008) 331-335. [104]A. Stoyanova, M. Sredkova, R. Iordanova, Y. Dimitriev, and A. Bachvarova-Nedelcheva, “Nonhydrolytic sol-gel synthesis and antibacterial properties of nanosized TiO2,” Optoelectron. Adv. Mater., 4 (2010) 2059-2063.
|