跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/09 02:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏林
研究生(外文):Po-Lin Chen
論文名稱:銅金屬嵌入式導線製程之化學機械研磨後清洗技術研究
論文名稱(外文):Study on Post-Chemical-Mechanical Polishing Cleaning in the Copper Damascene Process
指導教授:陳志恆陳志恆引用關係蔡明蒔蔡明蒔引用關係
指導教授(外文):Jyh-Herng ChenMing-Shih Tsai
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:95
中文關鍵詞:化學機械研磨後清洗膠體二氧化矽磨光刷洗界面活性劑非極性金屬螯合劑
外文關鍵詞:Post-Chemical-Mechanical Polishing CleaningColloidal SilicaBuffingScrubbingSurfactantNon-Polar Metal Chelator
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1030
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
在極大型積體電路製造上,銅因其有較低之電阻值以及較高抵抗電致遷移的能力,已成為未來金屬內連接線的另一選擇。而嵌入式製程則為製作銅導線之主要方式,其中,銅金屬及擴散阻障金屬之化學機械研磨更是影響銅金屬嵌入式導線製程良率之關鍵。然而,經過化學機械研磨後,晶圓表面會殘留大量的污染物,包括研磨過程所使用的研磨粉體、金屬離子及其他不純物之污染。若無有效之清洗製程去除此外來之污染物,則將影響後續製程之良率,而且殘留於介電層表面之大量銅離子污染極易擴散進入主動元件區,造成元件特性之劣化,故研磨後清洗製程為成功應用化學機械研磨於銅金屬嵌入式導線製程之關鍵技術。
在本論文中,我們提出一種新的清洗方法可以有效的去除吸附於銅金屬表面之膠體二氧化矽研磨粉體。此清洗製程包括以稀釋硝酸與BTA混合之水溶液進行磨光(buffing),以及PVA刷子搭配非離子性界面活性劑Triton X-100進行刷洗。在磨光的過程中,藉由硝酸輕微蝕刻去除銅金屬表面之氧化銅鈍化層,可以有效去除吸附之膠體二氧化矽,而BTA將於銅金屬表面形成Cu(I)-BTA保護層以取代氧化銅鈍化層。然而Cu(I)-BTA表面為疏水性,使得膠體二氧化矽極易再度吸附於其表面。因此經過磨光程序後,再以界面活性劑Triton X-100作為濕潤劑進行刷洗,將可改善Cu(I)-BTA表面之疏水性並完全去除殘留之膠體二氧化矽研磨粉體。而Triton X-100之濕潤機制乃藉由接觸角與表面張力之量測來進行研究。藉由我們的清洗製程,可以有效地去除吸附之膠體二氧化矽研磨粉體,同時在清洗過程中並未造成銅導線之腐蝕。
銅金屬化學機械研磨後清洗製程之另一關鍵為去除介電層表面殘留之銅離子污染。在本研究中,採用非極性金屬螯合劑D2EHPA之水溶液進行刷洗,以有效去除金屬離子之污染。D2EHPA具有膦酸基對於過渡金屬離子為強錯合劑,金屬離子在水溶液中會與D2EHPA以配位的方式形成電中性之螯合鹽類。D2EHPA濃度與水溶液pH值對於D2EHPA螯合能力之影響乃藉由溶劑萃取實驗進行研究。研究結果顯示,藉由D2EHPA水溶液進行刷洗可以有效地去除介電層表面之銅離子污染。
Under intensive investigation for Ultra-Large-Scale-Integration (ULSI), copper has emerged as an attractive, alternative choice for future interconnect applications owing to its low electrical resistivity and high electromigration resistance. The damascene process is regarded to be an essential and critical step for manufacturing copper interconnects, and the chemical-mechanical polishing (CMP) of copper and barrier layer metals is the key to enable this process. Unfortunately, copper CMP process leaves a large amount of contaminants on the surface, which must be eliminated. There are two major contaminants. One is the abrasive from the polishing slurry, and the other is the metallic impurity contamination on the wafer surface.
In this study, a novel method for efficient removal of colloidal silica abrasives from polished copper surface was proposed and demonstrated. This post-CMP cleaning process involves buffing process with diluted HNO3/BTA aqueous solution and a PVA brush scrubbing process with wetting surfactants, Triton X-100, for copper surface passivation and colloidal silica removal. Buffing with HNO3/BTA aqueous solution was able to remove copper oxide and forming Cu(I)-BTA hydrophobic passivation. Scrubbing with Triton X-100 surfactant is to enhance wettability on Cu(I)-BTA surface for the removal of residual silica abrasives. The wetting ability of Triton X-100 was determined by a contact angle and surface tension measurement. By this cleaning process, it was demonstrated that colloidal silica abrasives could be removed efficiently without copper corrosion.
One of the greatest challenges to the copper CMP cleaning process is the removal of residual copper contamination from the interlevel dielectric (ILD) surface. To meet this requirement, a PVA brush scrubbing process with non-polar metal chelator, D2EHPA, solution was introduced. The D2EHPA molecules bearing the phosphonate group are strong complexing agent towards transition metal ions. D2EHPA with metal ion in solution to form uncharged metal-chelate complexes by coordination. The effects of D2EHPA concentration and pH on copper ion chelating capability of D2EHPA were investigated by solvent extraction experiment. We have shown that scrubbing with D2EHPA is effective in removing copper contamination from the ILD surface.
Abstract (in Chinese)….…...……………………………………………………………..i
Abstract (in English)……………………………………………………………...……..ii
Acknowledgements………………………………..……………………………………iii
Contents…………………………………………………………………………………iv
Table Caption……………………………………………...…………………….………vi
Figure Caption……………………………………………...…………………………..vii
Chapter 1 Introduction…………………………………………………………………...1
1.1 Motivation……………..………………………………………………...1
1.1.1 Copper Interconnect Technology…………………………………1
1.1.2 Copper Damascene Process and CMP……………………………1
1.1.3 Post-Copper CMP Cleaning……………………………………...3
1.2 Thesis Outline……………………………………………………………4
Chapter 2 Fundamental Concepts………………………………………………………..6
2.1 CMP in the Copper Damascene Process………………………………...6
2.2 Distribution Equilibrium…………………………………………………7
2.3 Wetting by Surfactants…………………………………………………...8
2.3.1 Mechanisms of Adsorption……………………………………….9
2.3.2 Adsorption Isotherms…………………………………………...10
Chapter 3 Copper Ion Complexation with Non-Polar Metal Chelators………………..12
3.1 Introduction…………………………………………………………….12
3.2 Experimental Procedures……………………………………………….13
3.2.1 Chelating Capability of Metal Chelators………………………..13
3.2.2 Solubility of Metal Chelators in Water………………………….14
3.3 Results and Discussions………………………………………………...15
3.3.1 Chelating Capability of Metal Chelators………………………..15
3.3.2 Solubility of Metal Chelators in Water………………………….17
3.4 Summary………………………………………………………………..18
Chapter 4 Wetting Ability of Surfactants on Cu(I)-BTA Surface……………………...19
4.1 Introduction…………………………………………………………….19
4.2 Experimental Procedures……………………………………………….20
4.2.1 Wetting Ability of Surfactants…………………………………..20
4.2.2 Surface Charge of Colloidal Silica……………………………...21
4.3 Results and Discussions………………………………………………...22
4.3.1 Wetting Ability of Surfactants…………………………………..22
4.3.2 Controlling of Surface Charge by Surfactants…………………..24
4.4 Summary………………………………………………………………..25
Chapter 5 Post-CMP Cleaning in the Copper Damascene Process…………………….26
5.1 Introduction…………………………………………………………….26
5.2 Experimental Procedures……………………………………………….27
5.2.1 Sample Preparation……………………………………………...27
5.2.2 CMP and Post-CMP Cleaning Process………………………….28
5.2.3 The Performance of Post-CMP………………………………….30
5.3 Results and Discussions………………………………………………...31
5.3.1 Colloidal Silica Abrasives Removal…………………………….32
5.3.2 Copper Contamination Removal………………………………..35
5.4 Summary………………………………………………………………..36
Chapter 6 Conclusions………………………………………………………………….37
References……………………………………………………………………………...39
Tables…………………………………………………………………………………...43
Figures………………………………………………………………………………….48
Publication List…………………………………………………………………………94
Vita……………………………………………………………………………………...95
[1]J.M. Steigerwald, S.P. Murarka, R.J. Gutmann, and D.J. Duquette, “Chemical processes in the chemical mechanical polishing of copper”, Materials Chemistry and Physics, 41, pp. 217-228, March 1995.
[2]X.W. Lin, Dipu Pramanik, “Future interconnect technologies and copper metallization”, Solid State Technology, pp. 63-79, October 1998.
[3]W.A. Lanford, P.J. Ding, Wei Wang, S. Hymes, and S.P. Murarka, “Alloying of copper for use in microelectronic metallization”, Materials Chemistry and Physics, 41, pp. 192-198, March 1995.
[4]D. Hymes, H. Li, E. Zhao, and J.D. Larios, “The Challenges of the Copper CMP Clean”, Semiconductor International, pp. 117-122, June 1998.
[5]Z. Stavreva, D. Zeidler, M. Plötner, and K. Drescher, “Chemical Mechanical Polishing of Copper for Multilevel Metallization”, Applied Surface Science, 91, pp.192-196, 1995.
[6]C.Y. Chang, S.M. Sze, “ULSI Technology”, McGraw-Hill, Inc., New York, Chapter 8, 1996.
[7]F.B. Kaufman, D.B. Thompson, R.E. Broadie, M.A. Jaso, W.L. Guthrie, D.J. Pearson, and M.B. Small, “Chemical-mechanical polishing of fabricating patterned W metal as chip interconnects”, Journal of Electrochemical Society, vol. 138, no. 11, pp. 3460-3465, Nov. 1997.
[8]A. Beverina, H. Bernard, J. Palleau, J. Torres, and F. Tardif, “Copper Photocorrosion Phenomenon during Post CMP Cleaning”, Electrochemical and Solid-State Letters, 3(3), pp. 156-158, 2000.
[9]V. Nguyen, H. VanKranenburg, P. Woerlee, “Dependency of dishing on polish time and slurry chemistry in Cu CMP”, Microelectronic Engineering, 50, pp.403-410, 2000.
[10]Cheng-Ging Chen, “Study on Chemical-Mechanical Polishing in the Copper Damascene Process”, Master Thesis, Institute of Materials Science and Engineering, National Chiao-Tung University, 2000.
[11]S.L. Cohen, V.A. Brusic, F.B. Kaufman, G.S. Frankel, S. Motake, and B. Rush, “X-Ray Photoelectron Spectroscopy and Ellipsometry Studies of the Electrochemically Controlled Adsorption of Benzotriazole on Copper Surface”, Journal of Vacuum Science and Technology, Vol. 8, No. 3, May/Jun 1990.
[12]C. Huynh, M. Rutten, R. Cheek, and H. Linde, “A Study of Post-Chemical- Mechanical Polish Cleaning Strategies”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 372-376, 1998.
[13]N. Elbel, S. Wang, A. Sanger, D. Hadawi, and C. Held, “Copper Post-CMP Brush Cleaning”, IEEE IITC, pp. 80-82, 1999.
[14]J.H. Chen, C.F. Yeh, J.C. Lin, P.L. Chen, and W.R. Chen, “The Effect of Metal Chelators on the Post Copper CMP Cleaning of Copper Ions”, Symposium on Nano Device Technology 2000, pp.190-193, May 24-25, 2000.
[15]R.B. Magee, L.W. Lion, and A.T. Lemley, “Transport of Dissolved Organic Macromolecules and their Effect on the Transport of Phenanthrene in Porous Media”, Environmental Science Technology, Vol. 25, pp. 323-331.
[16]D.J. Vaughan, R.A.D. Pattrick, “Mineral Surfaces”, Chapman & Hall, Inc., London, 1995.
[17]W. Adamson, “Physical Chemistry of Surfaces”, John Wiley & Sons, Inc., Canada, 1990.
[18]F.F. Morpeth, “Preservation of Surfactant Formulations”, Chapman & Hall, Inc., London, 1995.
[19]Milton J. Rosen, “Surfactants and Interfacial Phenomena”, John Wiley & Sons, Inc., Canada, 1988.
[20]J. Torres, J. Palleau, F. Tardif, H. Bernard, A. Beverina, P. Motte, R. Pantel, and M. J.uhel, “Overview of Cu contamination during integration in a dual damascene architecture for sub-quarter micron technology”, Microelectronic Engineering, 50, pp. 425-431, 2000.
[21]B.E. Douglas, D.H. McDaniel, and J.J. Alexander, “Inorganic Chemistry”, John Wiley & Sons, Inc., Canada, 1994.
[22]H. Alan Fine, “Extractive Metallurgy Laboratory Exercises”, American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., New York, 1983.
[23]J.P. Sibilia, “A Guide to Materials Characterization and Chemical Analysis”, VCH Publishers, Inc., New York, 1996.
[24]Duncan J. Shaw, “Introduction to Colloid and Surface Chemistry”, Butterworth, Inc., Boston, 1980.
[25]Clair N. Sawyer, Perry L. McCarty, and Gene F. Parkin, “Chemistry for Environmental Engineering”, McGraw-Hill, Inc., 1994.
[26]C.K. Gupta, T.K. Mukherjee, “Hydrometallurgy in Extraction Process, Volume II”, CRC Press, Inc., Boston, 1990.
[27]N. Hirayama, N. Ichitani, K. Kubono, Y. Matsuoka, H. Kokusen, and T. Honjo, “Extraction behavior of divalent first row transition metal ions with N, N’-bis (2-hydroxyphenylmethyl)-N,N’-bis(2-pyridylmethyl)-1,2-ethanediamine and its derivatives”, Talanta, 44, pp. 2019-2025, 1997.
[28]T. Sehine, U. Hasegawa, “Solvent Extraction Chemistry”, Marcel Dekker, Inc., New York, 1977.
[29]E. Kissa, “Fluorinated Surfactants”, Marcel Dekker, Inc., New York, 1994.
[30]Y. Arai, “Chemistry of Powder Production”, Chapman & Hall, Inc., New York, 1996.
[31]Shih-Tzung Chang, “Chemical-Mechanical Polishing of Low Dielectric Constant Spin-On Glass Thin Films”, Master Thesis, Institute of Materials Science and Engineering, National Chiao-Tung University, 1997.
[32]Matijevic E. and Ottewill R.H., Journal of Colloidal Science, 13, 242 (1958)
[33]T. Ohmi, “Total Room Temperature Wet Cleaning for Si Substrate Surface”, Journal of Electrochemical Society, Vol. 143, No, 9, pp. 2957-2964, September 1996.
[34]V. Nguyen, H. VanKranenburg, P. Woerlee, “Dependency of dishing on polish time and slurry chemistry in Cu CMP”, Microelectronic Engineering, 50, pp. 403-410, 2000.
[35]C.W. Liu, B.T. Dai, and C.F. Yeh, “Post cleaning of chemical mechanical polishing process”, Applied Surface Science, 92, pp. 176-179, 1996.
[36]Z. Elbhiri, Y. Chevalier, Jean-Marc Chovenlon, N. Jaffrezic-Renault, “Grafting of phosphonate groups on the silica surface for the elaboration of ion-sensitive field-effect transistors”, Talanta, 52, pp. 495-507, June 2000.
[37]G. Nanz and L.E. Camiletti, “Modeling of Chemical-Mechanical Polishing A Review”, IEEE, 1995.
[38]T.M. Pan, T.F. Lei, C.C. Chen, T.S. Chao, M.C. Liaw, W.L. Yang, M.S. Tsai, C.P. Lu, and W.H. Chang, “Novel Cleaning Solutions for Polysilicon Film Post Chemical Mechanical Polishing”, IEEE Electron Device Letters, Vol. 21, No. 7, July 2000.
[39]Y. Taur and Tak H. Ning, “Fundamentals of Modern VLSI Devices”, Cambridge University Press, New York, 1998.
[40]John C. Vickerman, “Surface Analysis-The Principal Techniques”, John Wiley & Sons, Inc., New York, 1997.
[41]H. Schwenke, J. Knoth, and U. Weisbrod, “Analysis of particles on surfaces by total reflection X-ray fluorescence spectrometry”, Particles on Surfaces 3, Plenum Press, New York, 1991.
[42]H. Aoki, S. Yamasaki, T. Usami, Y. Tsuchiya, N. Ito, T. Onodera, Y. Hayashi, K. Ueno, H. Gomi, and N. Aoto, “A Degradation-Free Cu/HSQ Damascene Technology using Metal Mask Patterning and Post-CMP Cleaning by Electrolytic Ionic Water”, IEEE IEDM, pp. 777-780, 1997.
[43]Lance D. Eske and David W. Galipeau, “Characterization of SiO2 surface treatments using AFM, contact angle and a novel dewpoint technique”, Colloids and Surfaces, 154, pp. 33-51, 1999.
[44]H. Yamaguchi, N. Ohashi, T. Imai, K. Torii, J. Noguchi, T. Fujiwara, T. Saito, N. Owada, Y. Homma, S. Kondo, and K. Hinode, “A 7 level Metallization with Cu Damascene Process using Newly Developed Abrasive Free Polishing”, Interconnect Technology Conference 2000, pp. 264-266, 2000.
[45]M. Fayolle and F. Romagna, “Copper CMP evaluation: planarization issues”, Microelectronic Engineering, 37/38, pp. 135-141, 1997.
[46]Rajiv V. Joshi, “A New Damascene Structure for Submicrometer Interconnect Wiring”, IEEE Electron Device Letters, Vol. 14, No. 3, pp. 129-132, March 1993.
[47]C. Ryu, K.W. Kwon, Alvin L. S. Loke, H. Lee, T. Nogami, Valery M. Dubin, Rahim A. Kavari, Gary W. Ray, and S. Simon Wong, “Microstructure and Reliability of Copper Interconnects”, IEEE Transactions on Electron Devices, Vol. 46, No. 6, pp. 1113-1119, June 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top