跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧清龍
研究生(外文):Deng, Qing-Long
論文名稱:以雷射為光源之立體顯示技術
論文名稱(外文):Laser autostereoscopic display
指導教授:林伯是
指導教授(外文):Lin, Bor-Shyh
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電系統博士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:96
中文關鍵詞:雷射顯示器裸眼立體顯示繞射光學電腦產生全像雷射光斑
外文關鍵詞:Laser displayAutostereoscopyDiffraction opticsComputer-generated holographySpeckle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的研究目標在於探究以雷射作為光源之裸視立體顯示技術。
為了突破傳統的立體影像分光技術,本研究率先採用繞射光學中的閃耀式光柵和全像分光元件,以實現出不同於以往的裸視立體顯示技術。針對閃耀式光柵的製作上,本論文採用微機械加工技術與感應耦合電漿反應式離子蝕刻技術製作出四階閃耀光柵結構,並選用高透光性材料–聚二甲基矽氧烷以翻膜出對稱式四階閃耀式光柵膜片。除此之外,透過上述兩製程技術結合掃描浸潤式微影製程,可成功將結構直接轉印於石英並蝕刻之,突破於透明基板上蝕刻繞射元件的技術,值得一提的是該表面粗糙度可達到30奈米。除此之外,閃耀式光柵應用於雷射顯示器時,可同時作為分色分光之薄膜,創新的概念將為顯示器省去彩色濾光片。然而,全像分光元件,係以高穩定性的高分子分散液晶作為全像材料,並利用單色光建立符合三原色的振幅式光柵,完成立體影像分光之動作。此非浮雕之全像元件,也創下應用於雷射背光立體顯示器之另一項契機。
接著,本論文亦提出另一種應用於雷射背光源的立體顯示技術,電腦產生全像。使用修正型Gerchberg-Saxton演算法記錄視差立體圖像的相位函數,當完成解密之後可獲得左右視角內容的立體影像對。為了更加突顯此技術的價值,將之應用於視覺訓練,此結果表現相較於傳統以平面二維的左右圖卡,電腦全像所重建之影像內容,其高對比性、高清晰度及任意變化的差異性內容,可提高訓練的效果,甚至左右獨立的影像,可完全避免串音干擾的問題。另一方面,積分影像技術一直以來是屬於裸視立體顯示的一環,本論文也率先嘗試利用電腦產生全像取代積分攝影,省略了傳統積分影像的繁複地拍攝步驟,也突破現有積分影像之技術困難點。
最後,於本論文的終章,本研究重新探究了雷射作為背光源的本質,瞭解雷射光斑依然是雷射顯示器的一大阻礙,因此,本研究除了探討如何有效地降低光斑雜訊的機制,也分別提出了旋轉擴散片與振動光導管的方式,並且成功地驗證之。
This dissertation aims to explore the application of autostereoscopy based on laser backlight.
In order to break through traditional spectroscopy for 3D images, blazed grating and holographic optical element in diffraction optics are first utilized in this dissertation for autostereoscopy technology. Aiming at the production of blazed grating, Lithographie GalVanoformung Abformung and inductively coupled plasma-reactive-ion etching are applied to produce four-order blazed grating structure, and highly transparent material, polydimethylsiloxane, is selected to mold the symmetric four-order blazed grating films. Besides, the above processing techniques are combined with scanning immersion lithography to successfully print the structure onto quartz for etching. It breaks through the technique of etching diffraction optical elements on a transparent substrate. Worthy mentioning, the surface roughness could be less than 30 nm. What is more, applying blazed grating to laser displays could also be used as the film for color division. Such an innovative idea would remove color filtering for LCD. Nonetheless, holographic optical elements use high-stability polymer-dispersed-liquid-crystals as the holographic materials and utilize monochorma for establishing the amplitude grating conforming to the primary colors in order to complete the holographic optical element of 3D images. Such a non-relief holographic optical element also creates a different opportunity for the application to autostereoscopic displays with laser backlight.
Another application to autostereoscopic displays with laser backlight, computer-generated holography, is further proposed in this dissertation. With modified Gerchberg-Saxton algorithm (MGSA) to record the phase only function of parallax 3D images, the 3D image pair with left and right angles of view could be acquired after decoding. To further highlight the value of such a technique, it is applied to vision training. In comparison with traditional 2D training cards, computer-generated holographic images with high contrast, high definition, and changeable disparity could enhance the training effects and even affect the independent left and right images to completely avoid crosstalk. On the other hand, integral images have been a part of autostereoscopy. My research also attempts to replace integral photography with CGH, removing the complicated shooting steps for traditional integral images and breaking through the technological difficulty in current integral images.
Finally, the essence of using laser as the backlight is re-explored to understand that speckles are still a major obstruction for laser displays. For this reason, both rotation diffusers and vibrated light pipes are proposed, in addition to the mechanism for effectively reducing speckle noise, and successfully verified in this dissertation.
Abstract in Chinese..............................................................i
Abstract in English............................................................iii
Acknowledgements.................................................................v
Contents.......................................................................vii
List of Tables...................................................................x
List of Figures.................................................................xi
Chapter 1 Introduction...........................................................1
1.1 Historical background......................................................1
1.2 The perception of 3D vision................................................2
1.2.1 Monocular depth cues.......................................................3
1.2.2 Binocular depth cues.......................................................3
1.2.3 Interlacement..............................................................4
1.3 Motivation and objective of this dissertation..............................5
1.4 Organization of this dissertation..........................................6
Chapter 2 A backward glance......................................................8
2.1 Introduction...............................................................8
2.2 Overview of 3D technologies................................................9
2.3 3D photography............................................................10
2.3.1 Aircraft stereo telescope and application.................................11
2.3.2 Panoramic stereo photography and application..............................13
2.4 3D display................................................................14
2.4.1 Some classes of glass-stereoscopic display................................14
2.4.2 Some classes of autostereoscopic display..................................15
2.4.3 Pulfrich autostereo display...............................................17
2.5 Conclusion................................................................20
Chapter 3 Creative diffraction optics in autostereoscopic display...............22
3.1 Introduction..............................................................22
3.2 Principle of diffraction splitter.........................................23
3.2.1 Crosstalk.................................................................24
3.3 The blazed grating approach...............................................25
3.3.1 For monochrome display and fabrication....................................26
3.3.2 For color display and fabrication.........................................28
3.3.3 Embedded diffraction splitter film and application........................34
3.3.4 Summary...................................................................35
3.4 The holographic image splitter approach...................................35
3.4.1 Diffraction efficiency and crosstalk......................................39
3.4.2 Summary...................................................................40
3.5 Conclusion................................................................41
Chapter 4 Modified Gerchberg-Saxton algorithm type computer-generated hologram..43
4.1 Introduction..............................................................43
4.2 Modified Gerchberg-Saxton algorithm.......................................43
4.2.1 Spatial phase modulation and synthesis....................................44
4.3 Parallax stereogram.......................................................45
4.4 Vision training and application...........................................47
4.4.1 Experiment and analysis...................................................49
4.4.2 Summary...................................................................51
4.5 Conclusion................................................................51
Chapter 5 Integral computer-generated hologram..................................53
5.1 Introduction..............................................................53
5.2 Principle of integral images..............................................55
5.3 Result and analysis.......................................................56
5.4 Summary...................................................................59
5.5 Conclusion................................................................59
Chapter 6 Speckle suppression in laser display..................................60
6.1 Introduction..............................................................60
6.2 The rotating diffuser approach............................................61
6.3 The vibrating light pipe approach.........................................63
6.3.1 Suppression of spatial coherence..........................................63
6.3.2 Suppression of temporal coherence.........................................65
6.3.3 Experiment and analysis...................................................67
6.3.4 Discussion................................................................70
6.3.5 Summary...................................................................71
6.4 Laser head-up display and application.....................................72
6.5 Conclusion................................................................73
Chapter 7 Conclusions and future works..........................................75
7.1 Conclusions...............................................................75
7.1.1 Diffraction splitter......................................................75
7.1.2 MGSA type computer-generated holography...................................77
7.1.3 Speckle suppression.......................................................78
7.2 Future works..............................................................78
References......................................................................81
Appendix........................................................................90
[1] R. F. Tillman, Baird of television: the life story of John Logie Baird, Seeley Service, London, 1933.
[2] F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151(2), 285–295, 1960.
[3] B. S. Brown, “Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer,” Optica Acta 22, 773–791, 1975.
[4] D. L. MacAdam, “Stereoscopic perceptions of size, shape, distance and direction,” SMPTE Journal, 62(4), 271–93, 1954.
[5] J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115, 2011.
[6] B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135–143, 2006.
[7] D. Marr, Vision: A computational investigation into the human representation and processing of visual information, (W. H. Freeman and Company) New York, 1982.
[8] C. Wheatstone, “On some remarkable, and hitherto unobserved, phenomena of binocular vision (Part the first),” Philos. Trans. R. Soc. 128, 371–94, 1838.
[9] N. Flax, “Simple formulas for computation of prism vergence and accommodation stimulation in a Brewster stereoscope,” Am J Optom Physiol Opt. 53(6), 297–302, 1976.
[10] M. E. Moseley, D. L. White, S. C. Wang, M. Wikström, G. Gobbel, and K. Roth, “Stereoscopic MR imaging,” J. Comput. Assist. Tomogr. 13(1), 167–173, 1989.
[11] J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140, 2005.
[12] F. E. Ives, “Parallax stereogram and process of making same,” U.S., Patent 725567, 1902.
[13] M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825, 1908.
[14] D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30, 2008.
[15] S. Y. Park, N. Lee, and S. Kim, “Stereoscopic imaging camera with simultaneous vergence and focus control,” Opt. Eng. 43(12), 3130–3137, 2004.
[16] S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vision 5(10), 834–862, 2005.
[17] T. P. Pachidis and J. N. Lygouras, “Pseudo-stereo vision system: A detailed study,” J. Intell. Robot. Syst. 42(2), 135–167, 2005.
[18] J. Gluckman and S. K. Navar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 224–236, 2002.
[19] J. Zhu, Y. Li, and S. Ye, “Design and calibration of a single-camera-based stereo vision sensor,” Opt. Eng. 45(8), 1–6, 2006.
[20] Y. Xiao and K. B. Lim, “A prism-based single-lens stereovision system: From trinocular to multi-ocular,” Image Vis. Comput. 25(11), 1725–1736, 2007.
[21] D. H. Lee and I. S. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Auto. 16(5), 528–541, 2000.
[22] C. Y. Chen, T. T. Yang, and W. S. Sun, “Optics system design applying a micro-prism array of a single lens stereo image pair,” Opt. Express 16(20), 15495–15505, 2008.
[23] W. Dietrich, C. Wilson, D. Montgomery, and J. McKean, “Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model,” J. Geol. 101(2), 259–278, 1993.
[24] M. Jensen, M. Baumann, and Y. Q. Chen, “Low-cost multispectral aerial imaging using autonomous runway-free small flying wing vehicles,” Geoscience and Remote Sensing Symposium, Proc. IEEE 5, V–506–509, 2008.
[25] E. Frew, T. McGee, Z. Kim, X. Xiao, S. Jackson, M. Morimoto, S. Rathinam, J. Padial, and R. Sengupta, “Vision-based road-following using a small autonomous aircraft,” Aerospace Conference, Proc. IEEE 5, 3006–3015, 2004.
[26] T. Chen, R. Shibasaki, and S. Murai “Development and calibration of the airborne three-line scanner (TLS) imaging system,” Photogramm. Eng. Remote Sens. 69(1), 71–78, 2003.
[27] L. Wang, W. P. Sousa, P. Gong, and G. S. Biging, “Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama,” Remote Sens. Environ. 91(3), 432–440 (2004)
[28] M. Bader and C. B. Wagoner, “NASA program of airborne optical observations,” Appl. Opt. 9(2), 265–270, 1970.
[29] Q. L. Deng, C. Y. Chen, S. W. Cheng, W. S. Sun, and B. S. Lin, “Micro prism type single-lens 3D aircraft telescope system,” Opt. Commun. 285(24), 5001–5007, 2012.
[30] S. W. Cheng, “Depth map analysis of stereo image pair from micro optical single lens stereo-camera,” National Yunlin University of Science and Technology, MS thesis, 2011.
[31] S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 279–290, 2001.
[32] S. E. Chen and L. Williams, “Quicktime VR: An image-based approach to virtual environment navigation,” Proc. ACM, 29–38, Los Angeles, 1995.
[33] L. McMillan and G. Bishop, “Plenoptic modeling: an image-based rendering system,” Proc. ACM, 39–46, Los Angeles, 1995.
[34] Y. C. Chen, C. F. Chang, and Z. N. Shen, “Image-based model acquisition and interactive rendering for building 3D digital archives,” Proc. in International conference on digital archives technologies, 2005.
[35] F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603, 1997.
[36] T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8(4), 255–262, 2001.
[37] H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065, 1998.
[38] M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral threedimensional imaging on a color flat-panel display,” Appl. Opt. 44(21), 4475–4483, 2005.
[39] C. Y. Chen, Q. L. Deng, W. S. Sun, Q. Y. Cheng, B. S. Lin, and C. L. Su, “Panoramic stereo photography based on single-lens with a double-symmetric prism,” Opt. Express 21(7), 8474–8482, 2013.
[40] A. M. Kunz and C. P. Spagno, “Novel shutter glass control for simultaneous projection and picture acquisition,” Proc. in Immersive Projection Technology and Virtual Environments, 257–266, 2001.
[41] S. Maclness, C. D. Wiegel, and J. P. Park, “Head mounted display,” U.S., Patent D375495, 996.
[42] M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391, 2007.
[43] F. Mezei and A. P. Murani, “Combined three-dimensional polarization analysis and spin echo study of spin glass dynamics,” J. Magn. Magn. Mater. 14(2-3), 211–214, 1979.
[44] A. J. Woods and T. Rourke, “Ghosting in anaglyphic stereoscopic images,” Proc. SPIE, 5291, 354–365, 2004.
[45] N. A. Dodgson, “Autostereoscopic 3D displays,” Computer. 38(8), 31–36, 2005.
[46] K. Sakamoto, R. Kimura, and M. Takaki, “Parallax polarizer barrier stereoscopic 3D Display Systems,” Active Media Technology, Proc. IEEE, 469–474, 2005.
[47] R. Börner, B. Duckstein, O. Machui, H. Röder, T. Sinnig, and T. Sikora, “A family of single-user autostereoscopic displays with head-tracking capabilities,” IEEE Trans. Circuits Syst. Video Technol. 10(2), 234–243, 2000.
[48] Q. L. Deng, C. Y. Chen, W. L. Lin, B. Y. Shew, D. Chiang, Y. H. Tang, and B. S. Lin, “Transfer of continuous-relief lenticular array onto quartz substrate by using the SIL combined dry etching method,” J. Micromech. Microeng. 23(3), 035021–6, 2013.
[49] C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50(6), 1610–1616, 2008.
[50] V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1(2), 347–353, 2005.
[51] H. K. Nishihara, “Practical real-time imaging stereo matcher,” Opt. Eng. 23(5), 536–545, 1984.
[52] D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778, 1948.
[53] S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), .694–698, 2008.
[54] G. E. Favalora, R. K. Dorval, D. M. Hall, M. G. Giovinco, and J. Napoli, “Volumetric three-dimensional display system with rasterization hardware,” Proc. SPIE 4297, 227–235, 2001.
[55] H. M. Ozaktas and L. Onural, Three-dimensional television, Chapter 13, Springer, New York, 2008.
[56] M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201–030201–14, 2009.
[57] F. Speranza, W. J. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 94–103, 2006.
[58] R. L. Gregory, Eye and brain: The psychology of seeing, Chapters 5&;6, 5th ed., Princeton university press, 1997.
[59] C. Pulfrich, “Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie,” Naturwissenschaften 10(35), 751–761, 1922.
[60] M. S. Katz and I. R. A. Schwartz, “New observation of the Pulfrich effect,” J. Opt. Soc. Am. 45(7), 523–523, 1955.
[61] K. Jacobs and R. Karpf, “Continuously adjustable Pulfrich spectacles for mobile devices,” Proc. SPIE 8304, 830406–1–10, 2012.
[62] S. Scher, J. Liu, R. Vaish, P. Gunawardane, and J. Davis, “3D+ 2DTV: 3D displays with no ghosting for viewers without glasses,” ACM Trans. Graph. 32(3), 1–10, 2013.
[63] C. Y. Chen, M. D. Ke, Q. L. Deng, J. K. Siao, “Pulfrich autostereo display with micro-prism array,” Opt. Express 21(18), 21264–21272, 2013.
[64] J. K. Siao, “A Pulfrich type of autostereoscopic display with micro prism sheet,” National Yunlin University of Science and Technology, MS thesis, 2013.
[65] H. H. Lin, C. H. Lee, and M. H. Lu, “Dye-less color filter fabricated by roll-to-roll imprinting for liquid crystal display applications,” Opt. Express 17(15), 12397–12406, 2009.
[66] C. Y. Chen, Q. L. Deng, and H. C. Wu, “A high-brightness diffractive stereoscopic display technology,” Displays 31(4-5), 169–174, 2010.
[67] W. C. Su, C. Y. Chen, and Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19(10), 9942–9949, 2011.
[68] T. Inoue and H. Ohzu, “Accommodative responses to stereoscopic three-dimensional display,” Appl. Opt. 36(19), 4509–4515, 1997.
[69] C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31(2), 99–103, 2010.
[70] C. Y. Chen, Q. L. Deng, D. Chiang, and Y. R. Chang, “Binary blazed grating based on autostereoscopic display mechanism,” Appl. Opt. 51(7), 877–882, 2012.
[71] C. Y. Chen, Q. L. Deng, B. S. Lin, and W. C. Hung, “Quartz blazed grating applied on autostereoscopic display,” J. Disp. Technol. 8(8), 433–438, 2012.
[72] H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 193–202, 1998.
[73] M. G. Moharam and T. K.Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818, 1981.
[74] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA Process),” Microelectron. Eng. 4(1), 35–56, 1986.
[75] S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsyst. Technol. 13(5), 465–474, 2007.
[76] Y. R. Chang, “Fabrication of blazed grating applied on stereoscopic display by using reactive ion etching,” National Yunlin University of Science and Technology, MS thesis, 2011.
[77] M. C. Chou, H. Yang, and S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsyst. Technol. 7(1), 36–39, 2001.
[78] S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrate waveguides,” J. Micromech. Microeng. 20(8), 087002–087007, 2010.
[79] R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13(3), 419–424, 2003.
[80] L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29(1), 91–95, 2000.
[81] W. C. Hung, “Fabrication of blazed grating applied on stereoscopic display by using reactive ion etching,” National Yunlin University of Science and Technology, MS thesis, 2010.
[82] C. Y. Chen, Q. L. Deng, and H. H. Lin, “Design of a symmetric blazed grating sheet embedded in autostereoscopic display,” Opt. Lett. 36(17), 3422–3424, 2011.
[83] J. Chang and C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18(14), 2407–2417, 1979.
[84] A.V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74(1), 65–70, 2007.
[85] H. W. Ho, “Holographic splitter fabricated with polymer-dispersed-liquid-crystals for color stereoscopic display,” National Yunlin University of Science and Technology, MS thesis, 2011.
[86] Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612, 2013.
[87] Y. H. Cho, R. Kawade, T. Kubota, and Y. Kawakami, “Control of morphology and diffraction efficiency of holographic gratings using siloxane-containing reactive diluent,” Sci. Technol. Adv. Mater. 6(5), 435–442, 2005.
[88] N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE 1461, 291–302, 1991.
[89] M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” Proc. ACM, 387–394, 1995.
[90] B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13(2), 160–168, 1969.
[91] Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48(17), 3255–3260, 2009.
[92] M. Bayraktar and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography,” Appl. Opt. 49(24), 4647–4654, 2010.
[93] K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane,” Opt. Express 20(12), 12949–12958, 2012.
[94] H. E. Hwang, H. T. Chang, and W. N. Lie, “Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems,” Opt. Express 17(16), 13700–13710, 2009.
[95] H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34(24), 3917–3919, 2009.
[96] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246, 1972.
[97] G. S. Huang, “Using modified Gerchberg-Saxton algorithm for parallax stereoscopic display based on Fresnel computer generated holography,” National Yunlin University of Science and Technology, MS thesis, 2013.
[98] D. Kersten and G. E. Legge, “Convergence accommodation,” JOSA 73(3), 332–338, 1983.
[99] A. S. Bruce, D. A. Atchison, and H. Bhoola, “Accommodation-convergence relationships and age,” Invest. Ophthalmol. Vis. Sci. 36(2), 406–413, 1995.
[100] H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197, 2009.
[101] J. Maxwell, J. Tong, and C. M. Schor, “Short-term adaptation of accommodation, accommodative vergence and disparity vergence facility,” Vision Res. 62(1), 93–101, 2012.
[102] J. Maxwell, J. Tong, and C. M. Schor, “The first and second order dynamics of accommodative convergence and disparity convergence,” Vision Res. 50(17), 1728–1739, 2010.
[103] U. Polat, “Making perceptual learning practical to improve visual functions,” Vision Res. 49(21), 2566–2573, 2009.
[104] B. Julesz, “Cyclopean perception and neurophysiology,” Invest. Ophthalmol. Vis. Sci. 11(6), 540–548, 1972.
[105] J. M. Hillis and M. S. Banks, “Are corresponding points fixed?” Vision Res. 41(19), 2457–2473, 2001.
[106] R. F. Fisher, “The force of contraction of the human ciliary muscle during accommodation,” J. Physiol.-London 270(1), 51–74, 1977.
[107] Y. Y. Yeh and L. D. Silverstein, “Limits of fusion and depth judgment in stereoscopic color displays,” Hum. Factors 32(1), 45–60, 1990.
[108] G. Lippmann, “La photographic intergrale,” C. R. Acad. Sci. 146, 446–451, 1908.
[109] H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159, 2001.
[110] X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560, 2013.
[111] T. Okoshi, Three-dimensional imaging techniques, Academic Press, New York, 1976.
[112] Y. Ohsawa, K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Computer-generated holograms using multiview images captured by a small number of sparsely arranged cameras,” Appl. Opt. 52(1), A167–A176, 2013.
[113] J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21(3), 3474–3485, 2013.
[114] N. Chen, J. H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167, 2010.
[115] H. Yoo, “Axially moving a lenslet array for high-resolution 3D images in computational integral imaging,” Opt. Express 21(7), 8873–8878, 2013.
[116] H. E. Hwang, H. T. Chang, and W. N. Lie, “Lensless optical data embedding system using concealogram and cascaded digital Fresnel hologram,” J. Opt. Soc. Am. A 28(7), 1453–1461, 2011.
[117] S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object recostruction using computational integral imaging,” Opt. Express 12(3), 483–491, 2004.
[118] H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys. 50(9), 09NE14–1–3, 2011.
[119] J. M. Artigas, A. Felipe, and M. J. Buades, “Contrast sensitivity of the visual system in speckle imagery,” J. Opt. Soc. Am. A 11(9), 2345–2349, 1994.
[120] L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” App. Opt. 37(10), 1770–1775, 1998.
[121] L. Wang, T. Tschudi, T. Halldorsson, and P. Petursson, “Method and device for eliminating image speckles in scanning laser image projection,” U.S. Patent 6367935, 2002.
[122] S. Lowenthal and H. Aresenault, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. 61(7), 847–851, 1971.
[123] E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66(11), 1290–1294, 1976.
[124] K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys. 43(8B), 5904–5906, 2004.
[125] S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Opt. Express 20(8), 8770–8783, 2012.
[126] M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49(2), 024202–1–6, 2010.
[127] H. Funamizu and J. Uozumi, “Generation of fractal speckles by means of a spatial light modulator,” Opt. Express 15(12), 7415–7422, 2007.
[128] K. Y. Chiu, “Reduction of speckle noise with rotating and vibrating light-guide optical element,” National Yunlin University of Science and Technology, MS thesis, 2013.
[129] J. C. Dainty, Laser speckle and Related Phenomena, 2nd ed., Springer-Verlag, Berlin, 1984.
[130] H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78, 1985.
[131] C. Y. Chen, W. C. Su, C. H. Lin, M. D. Ke, Q. L. Deng, and K. Y. Chiu, “Reduction of speckles and distortion in projection system by using a rotating diffuser,” Opt. Rev. 19(6), 440–443, 2012.
[132] Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A. 27(8), 1812–1817, 2010.
[133] M. Francon, Laser speckle and applications in optics, Academic Press, New York, San Francisco, London, 1979.
[134] F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt. 48(19), 3742–3749, 2009.
[135] A. J. Weierholt, E. G. Rawson, and J. W. Goodman, “Frequency-correlation properties of optical waveguide intensity patterns,” J. Opt. Soc. Am. A 1(2), 201–205, 1984.
[136] C. Rydberg, J. Bengtsson, and T. Sandstrom, “Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,” J. Microlith. Microfab. Microsyst. 5(3), 033004–033004–8, 2006.
[137] F. Riechert, “Speckle reduction in projection systems,” Ph.D. thesis, Karlsruhe Institute of Technology (KIT), 2009.
[138] Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp. 18(12), 1119–1126, 2010.
[139] M. O. Freeman, “MEMS scanned laser head-up display,” Proc. SPIE MOEMS-MEMS 79300G–79300G–8, 2011.
[140] M. D. Ke, “The construction and applications of a physiological processing system,” National Yunilin University of Science and Technology, Ph.D. dissertation, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top