|
[1] R. F. Tillman, Baird of television: the life story of John Logie Baird, Seeley Service, London, 1933. [2] F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151(2), 285–295, 1960. [3] B. S. Brown, “Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer,” Optica Acta 22, 773–791, 1975. [4] D. L. MacAdam, “Stereoscopic perceptions of size, shape, distance and direction,” SMPTE Journal, 62(4), 271–93, 1954. [5] J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115, 2011. [6] B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135–143, 2006. [7] D. Marr, Vision: A computational investigation into the human representation and processing of visual information, (W. H. Freeman and Company) New York, 1982. [8] C. Wheatstone, “On some remarkable, and hitherto unobserved, phenomena of binocular vision (Part the first),” Philos. Trans. R. Soc. 128, 371–94, 1838. [9] N. Flax, “Simple formulas for computation of prism vergence and accommodation stimulation in a Brewster stereoscope,” Am J Optom Physiol Opt. 53(6), 297–302, 1976. [10] M. E. Moseley, D. L. White, S. C. Wang, M. Wikström, G. Gobbel, and K. Roth, “Stereoscopic MR imaging,” J. Comput. Assist. Tomogr. 13(1), 167–173, 1989. [11] J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140, 2005. [12] F. E. Ives, “Parallax stereogram and process of making same,” U.S., Patent 725567, 1902. [13] M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825, 1908. [14] D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30, 2008. [15] S. Y. Park, N. Lee, and S. Kim, “Stereoscopic imaging camera with simultaneous vergence and focus control,” Opt. Eng. 43(12), 3130–3137, 2004. [16] S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vision 5(10), 834–862, 2005. [17] T. P. Pachidis and J. N. Lygouras, “Pseudo-stereo vision system: A detailed study,” J. Intell. Robot. Syst. 42(2), 135–167, 2005. [18] J. Gluckman and S. K. Navar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 224–236, 2002. [19] J. Zhu, Y. Li, and S. Ye, “Design and calibration of a single-camera-based stereo vision sensor,” Opt. Eng. 45(8), 1–6, 2006. [20] Y. Xiao and K. B. Lim, “A prism-based single-lens stereovision system: From trinocular to multi-ocular,” Image Vis. Comput. 25(11), 1725–1736, 2007. [21] D. H. Lee and I. S. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Auto. 16(5), 528–541, 2000. [22] C. Y. Chen, T. T. Yang, and W. S. Sun, “Optics system design applying a micro-prism array of a single lens stereo image pair,” Opt. Express 16(20), 15495–15505, 2008. [23] W. Dietrich, C. Wilson, D. Montgomery, and J. McKean, “Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model,” J. Geol. 101(2), 259–278, 1993. [24] M. Jensen, M. Baumann, and Y. Q. Chen, “Low-cost multispectral aerial imaging using autonomous runway-free small flying wing vehicles,” Geoscience and Remote Sensing Symposium, Proc. IEEE 5, V–506–509, 2008. [25] E. Frew, T. McGee, Z. Kim, X. Xiao, S. Jackson, M. Morimoto, S. Rathinam, J. Padial, and R. Sengupta, “Vision-based road-following using a small autonomous aircraft,” Aerospace Conference, Proc. IEEE 5, 3006–3015, 2004. [26] T. Chen, R. Shibasaki, and S. Murai “Development and calibration of the airborne three-line scanner (TLS) imaging system,” Photogramm. Eng. Remote Sens. 69(1), 71–78, 2003. [27] L. Wang, W. P. Sousa, P. Gong, and G. S. Biging, “Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama,” Remote Sens. Environ. 91(3), 432–440 (2004) [28] M. Bader and C. B. Wagoner, “NASA program of airborne optical observations,” Appl. Opt. 9(2), 265–270, 1970. [29] Q. L. Deng, C. Y. Chen, S. W. Cheng, W. S. Sun, and B. S. Lin, “Micro prism type single-lens 3D aircraft telescope system,” Opt. Commun. 285(24), 5001–5007, 2012. [30] S. W. Cheng, “Depth map analysis of stereo image pair from micro optical single lens stereo-camera,” National Yunlin University of Science and Technology, MS thesis, 2011. [31] S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 279–290, 2001. [32] S. E. Chen and L. Williams, “Quicktime VR: An image-based approach to virtual environment navigation,” Proc. ACM, 29–38, Los Angeles, 1995. [33] L. McMillan and G. Bishop, “Plenoptic modeling: an image-based rendering system,” Proc. ACM, 39–46, Los Angeles, 1995. [34] Y. C. Chen, C. F. Chang, and Z. N. Shen, “Image-based model acquisition and interactive rendering for building 3D digital archives,” Proc. in International conference on digital archives technologies, 2005. [35] F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603, 1997. [36] T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8(4), 255–262, 2001. [37] H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065, 1998. [38] M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral threedimensional imaging on a color flat-panel display,” Appl. Opt. 44(21), 4475–4483, 2005. [39] C. Y. Chen, Q. L. Deng, W. S. Sun, Q. Y. Cheng, B. S. Lin, and C. L. Su, “Panoramic stereo photography based on single-lens with a double-symmetric prism,” Opt. Express 21(7), 8474–8482, 2013. [40] A. M. Kunz and C. P. Spagno, “Novel shutter glass control for simultaneous projection and picture acquisition,” Proc. in Immersive Projection Technology and Virtual Environments, 257–266, 2001. [41] S. Maclness, C. D. Wiegel, and J. P. Park, “Head mounted display,” U.S., Patent D375495, 996. [42] M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391, 2007. [43] F. Mezei and A. P. Murani, “Combined three-dimensional polarization analysis and spin echo study of spin glass dynamics,” J. Magn. Magn. Mater. 14(2-3), 211–214, 1979. [44] A. J. Woods and T. Rourke, “Ghosting in anaglyphic stereoscopic images,” Proc. SPIE, 5291, 354–365, 2004. [45] N. A. Dodgson, “Autostereoscopic 3D displays,” Computer. 38(8), 31–36, 2005. [46] K. Sakamoto, R. Kimura, and M. Takaki, “Parallax polarizer barrier stereoscopic 3D Display Systems,” Active Media Technology, Proc. IEEE, 469–474, 2005. [47] R. Börner, B. Duckstein, O. Machui, H. Röder, T. Sinnig, and T. Sikora, “A family of single-user autostereoscopic displays with head-tracking capabilities,” IEEE Trans. Circuits Syst. Video Technol. 10(2), 234–243, 2000. [48] Q. L. Deng, C. Y. Chen, W. L. Lin, B. Y. Shew, D. Chiang, Y. H. Tang, and B. S. Lin, “Transfer of continuous-relief lenticular array onto quartz substrate by using the SIL combined dry etching method,” J. Micromech. Microeng. 23(3), 035021–6, 2013. [49] C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50(6), 1610–1616, 2008. [50] V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1(2), 347–353, 2005. [51] H. K. Nishihara, “Practical real-time imaging stereo matcher,” Opt. Eng. 23(5), 536–545, 1984. [52] D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778, 1948. [53] S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), .694–698, 2008. [54] G. E. Favalora, R. K. Dorval, D. M. Hall, M. G. Giovinco, and J. Napoli, “Volumetric three-dimensional display system with rasterization hardware,” Proc. SPIE 4297, 227–235, 2001. [55] H. M. Ozaktas and L. Onural, Three-dimensional television, Chapter 13, Springer, New York, 2008. [56] M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201–030201–14, 2009. [57] F. Speranza, W. J. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 94–103, 2006. [58] R. L. Gregory, Eye and brain: The psychology of seeing, Chapters 5&;6, 5th ed., Princeton university press, 1997. [59] C. Pulfrich, “Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie,” Naturwissenschaften 10(35), 751–761, 1922. [60] M. S. Katz and I. R. A. Schwartz, “New observation of the Pulfrich effect,” J. Opt. Soc. Am. 45(7), 523–523, 1955. [61] K. Jacobs and R. Karpf, “Continuously adjustable Pulfrich spectacles for mobile devices,” Proc. SPIE 8304, 830406–1–10, 2012. [62] S. Scher, J. Liu, R. Vaish, P. Gunawardane, and J. Davis, “3D+ 2DTV: 3D displays with no ghosting for viewers without glasses,” ACM Trans. Graph. 32(3), 1–10, 2013. [63] C. Y. Chen, M. D. Ke, Q. L. Deng, J. K. Siao, “Pulfrich autostereo display with micro-prism array,” Opt. Express 21(18), 21264–21272, 2013. [64] J. K. Siao, “A Pulfrich type of autostereoscopic display with micro prism sheet,” National Yunlin University of Science and Technology, MS thesis, 2013. [65] H. H. Lin, C. H. Lee, and M. H. Lu, “Dye-less color filter fabricated by roll-to-roll imprinting for liquid crystal display applications,” Opt. Express 17(15), 12397–12406, 2009. [66] C. Y. Chen, Q. L. Deng, and H. C. Wu, “A high-brightness diffractive stereoscopic display technology,” Displays 31(4-5), 169–174, 2010. [67] W. C. Su, C. Y. Chen, and Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19(10), 9942–9949, 2011. [68] T. Inoue and H. Ohzu, “Accommodative responses to stereoscopic three-dimensional display,” Appl. Opt. 36(19), 4509–4515, 1997. [69] C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31(2), 99–103, 2010. [70] C. Y. Chen, Q. L. Deng, D. Chiang, and Y. R. Chang, “Binary blazed grating based on autostereoscopic display mechanism,” Appl. Opt. 51(7), 877–882, 2012. [71] C. Y. Chen, Q. L. Deng, B. S. Lin, and W. C. Hung, “Quartz blazed grating applied on autostereoscopic display,” J. Disp. Technol. 8(8), 433–438, 2012. [72] H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 193–202, 1998. [73] M. G. Moharam and T. K.Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818, 1981. [74] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA Process),” Microelectron. Eng. 4(1), 35–56, 1986. [75] S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsyst. Technol. 13(5), 465–474, 2007. [76] Y. R. Chang, “Fabrication of blazed grating applied on stereoscopic display by using reactive ion etching,” National Yunlin University of Science and Technology, MS thesis, 2011. [77] M. C. Chou, H. Yang, and S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsyst. Technol. 7(1), 36–39, 2001. [78] S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrate waveguides,” J. Micromech. Microeng. 20(8), 087002–087007, 2010. [79] R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13(3), 419–424, 2003. [80] L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29(1), 91–95, 2000. [81] W. C. Hung, “Fabrication of blazed grating applied on stereoscopic display by using reactive ion etching,” National Yunlin University of Science and Technology, MS thesis, 2010. [82] C. Y. Chen, Q. L. Deng, and H. H. Lin, “Design of a symmetric blazed grating sheet embedded in autostereoscopic display,” Opt. Lett. 36(17), 3422–3424, 2011. [83] J. Chang and C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18(14), 2407–2417, 1979. [84] A.V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74(1), 65–70, 2007. [85] H. W. Ho, “Holographic splitter fabricated with polymer-dispersed-liquid-crystals for color stereoscopic display,” National Yunlin University of Science and Technology, MS thesis, 2011. [86] Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612, 2013. [87] Y. H. Cho, R. Kawade, T. Kubota, and Y. Kawakami, “Control of morphology and diffraction efficiency of holographic gratings using siloxane-containing reactive diluent,” Sci. Technol. Adv. Mater. 6(5), 435–442, 2005. [88] N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE 1461, 291–302, 1991. [89] M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” Proc. ACM, 387–394, 1995. [90] B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13(2), 160–168, 1969. [91] Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48(17), 3255–3260, 2009. [92] M. Bayraktar and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography,” Appl. Opt. 49(24), 4647–4654, 2010. [93] K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane,” Opt. Express 20(12), 12949–12958, 2012. [94] H. E. Hwang, H. T. Chang, and W. N. Lie, “Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems,” Opt. Express 17(16), 13700–13710, 2009. [95] H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34(24), 3917–3919, 2009. [96] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246, 1972. [97] G. S. Huang, “Using modified Gerchberg-Saxton algorithm for parallax stereoscopic display based on Fresnel computer generated holography,” National Yunlin University of Science and Technology, MS thesis, 2013. [98] D. Kersten and G. E. Legge, “Convergence accommodation,” JOSA 73(3), 332–338, 1983. [99] A. S. Bruce, D. A. Atchison, and H. Bhoola, “Accommodation-convergence relationships and age,” Invest. Ophthalmol. Vis. Sci. 36(2), 406–413, 1995. [100] H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197, 2009. [101] J. Maxwell, J. Tong, and C. M. Schor, “Short-term adaptation of accommodation, accommodative vergence and disparity vergence facility,” Vision Res. 62(1), 93–101, 2012. [102] J. Maxwell, J. Tong, and C. M. Schor, “The first and second order dynamics of accommodative convergence and disparity convergence,” Vision Res. 50(17), 1728–1739, 2010. [103] U. Polat, “Making perceptual learning practical to improve visual functions,” Vision Res. 49(21), 2566–2573, 2009. [104] B. Julesz, “Cyclopean perception and neurophysiology,” Invest. Ophthalmol. Vis. Sci. 11(6), 540–548, 1972. [105] J. M. Hillis and M. S. Banks, “Are corresponding points fixed?” Vision Res. 41(19), 2457–2473, 2001. [106] R. F. Fisher, “The force of contraction of the human ciliary muscle during accommodation,” J. Physiol.-London 270(1), 51–74, 1977. [107] Y. Y. Yeh and L. D. Silverstein, “Limits of fusion and depth judgment in stereoscopic color displays,” Hum. Factors 32(1), 45–60, 1990. [108] G. Lippmann, “La photographic intergrale,” C. R. Acad. Sci. 146, 446–451, 1908. [109] H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159, 2001. [110] X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560, 2013. [111] T. Okoshi, Three-dimensional imaging techniques, Academic Press, New York, 1976. [112] Y. Ohsawa, K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Computer-generated holograms using multiview images captured by a small number of sparsely arranged cameras,” Appl. Opt. 52(1), A167–A176, 2013. [113] J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21(3), 3474–3485, 2013. [114] N. Chen, J. H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167, 2010. [115] H. Yoo, “Axially moving a lenslet array for high-resolution 3D images in computational integral imaging,” Opt. Express 21(7), 8873–8878, 2013. [116] H. E. Hwang, H. T. Chang, and W. N. Lie, “Lensless optical data embedding system using concealogram and cascaded digital Fresnel hologram,” J. Opt. Soc. Am. A 28(7), 1453–1461, 2011. [117] S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object recostruction using computational integral imaging,” Opt. Express 12(3), 483–491, 2004. [118] H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys. 50(9), 09NE14–1–3, 2011. [119] J. M. Artigas, A. Felipe, and M. J. Buades, “Contrast sensitivity of the visual system in speckle imagery,” J. Opt. Soc. Am. A 11(9), 2345–2349, 1994. [120] L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” App. Opt. 37(10), 1770–1775, 1998. [121] L. Wang, T. Tschudi, T. Halldorsson, and P. Petursson, “Method and device for eliminating image speckles in scanning laser image projection,” U.S. Patent 6367935, 2002. [122] S. Lowenthal and H. Aresenault, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. 61(7), 847–851, 1971. [123] E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66(11), 1290–1294, 1976. [124] K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys. 43(8B), 5904–5906, 2004. [125] S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Opt. Express 20(8), 8770–8783, 2012. [126] M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49(2), 024202–1–6, 2010. [127] H. Funamizu and J. Uozumi, “Generation of fractal speckles by means of a spatial light modulator,” Opt. Express 15(12), 7415–7422, 2007. [128] K. Y. Chiu, “Reduction of speckle noise with rotating and vibrating light-guide optical element,” National Yunlin University of Science and Technology, MS thesis, 2013. [129] J. C. Dainty, Laser speckle and Related Phenomena, 2nd ed., Springer-Verlag, Berlin, 1984. [130] H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78, 1985. [131] C. Y. Chen, W. C. Su, C. H. Lin, M. D. Ke, Q. L. Deng, and K. Y. Chiu, “Reduction of speckles and distortion in projection system by using a rotating diffuser,” Opt. Rev. 19(6), 440–443, 2012. [132] Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A. 27(8), 1812–1817, 2010. [133] M. Francon, Laser speckle and applications in optics, Academic Press, New York, San Francisco, London, 1979. [134] F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt. 48(19), 3742–3749, 2009. [135] A. J. Weierholt, E. G. Rawson, and J. W. Goodman, “Frequency-correlation properties of optical waveguide intensity patterns,” J. Opt. Soc. Am. A 1(2), 201–205, 1984. [136] C. Rydberg, J. Bengtsson, and T. Sandstrom, “Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,” J. Microlith. Microfab. Microsyst. 5(3), 033004–033004–8, 2006. [137] F. Riechert, “Speckle reduction in projection systems,” Ph.D. thesis, Karlsruhe Institute of Technology (KIT), 2009. [138] Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp. 18(12), 1119–1126, 2010. [139] M. O. Freeman, “MEMS scanned laser head-up display,” Proc. SPIE MOEMS-MEMS 79300G–79300G–8, 2011. [140] M. D. Ke, “The construction and applications of a physiological processing system,” National Yunilin University of Science and Technology, Ph.D. dissertation, 2013.
|