跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/21 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文雅
論文名稱:捷運列車排班計畫之模糊多目標決策分析
論文名稱(外文):Integration MOP and Fuzzy MCDM for Train Scheduling
指導教授:蕭再安蕭再安引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:80
中文關鍵詞:列車時刻表策略性班距多目標規劃模糊測度
外文關鍵詞:train schedulingstrategic headwaymulti-objective programmingfuzzy measure
相關次數:
  • 被引用被引用:4
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
捷運系統服務水準之良窳,為政府監理機關所關切重要議題之一。本文以台北捷運高運量系統為研究對象,從列車時刻表上位計畫著手,利用二階段規劃方法,探討最適班距規劃模式。
第一階段建構多目標規劃模式,以滿足最大服務水準及最小營運風險為目標,規劃產生多組策略性班距(替選方案);第二階段則應用新模糊測度方法,納入COM(centre operational manager)及政府部門捷運監理代表之偏好結構對第一階段所產生之替選方案進行排序。由Sugeno所提出之模糊測度方法,所需調查資訊量相當龐大,本文係應用新的模糊測度方法,透過AHP問卷調查取得決策者對各準則之權重,再透過第二次問卷調查擷取重要準則之模糊測度值,利用新模糊測度方法推導出其它準則之模糊測度值,最後再利用模糊積分,求取各替選方案之綜合評點值,以進行方案排序工作。

Our work concerns the problem that the demand of passengers exceeds the capacity of the existing train schedule of Taipei Mass Rapid Transit. This article presents a model for the optimization of the tactical train schedules, which maximizes the level of the service and minimizes the risk of the operation. The model is an application of a multi-objective programming and a new approach of fuzzy measures named MOFA.
The research of MOFA is divided into two stages. The first stage is to create Application of Integration Model MOFA to Train Scheduling that is considered to maximize the level of service and minimize the risk of operation. We also examine it from several aspects such as the constraint of the signal system, the customer service, and the safety in this model. However, the conflict of trains at a terminal station has to be taken into consideration as well. The purpose of the first stage is to evaluate a lot of sets of the strategic headway (i.e. non-inferior), in which satisfies the preceding objectives and all the constraints. We could obtain several alternatives of headway by scenario approaching in this stage, and the result would apply to the next stage. The second stage is the extension of the first stage, which is an application of new fuzzy measures and fuzzy integrals approaching to calculate weights between the objectives. When we determine the weight of the objectives on decision-making problem. The approach of the fuzzy measures and fuzzy integrals, which Sugeno provided, always needs a lot of input information. Therefore, the new fuzzy measure approach needs fewer inputs to calculate the weights of an objective. We could evaluate the optimal solution for headway of train scheduling in this stage.
In the previous publications, the researchers focused on the conflict between two trains passing or meeting at a common section. Moreover, they only considered a single objective when they formulated a model of train scheduling. In our model, we both consider that the conflict between two trains passing or meeting at a common section in the strategic headway model, and also the satisfy multi-objective. Additionally, we apply the new fuzzy measure approach to dominate the alternatives. We also present the results of a computational study with the model. The processing techniques are tested based on the data from Taipei Mass Rapid Transit. The result of the case study will assist the dispatchers of Taipei MRT in their train schedule planning works.

中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 Ⅶ
第一章 緒論 1
1.1研究動機與目的 1
1.2研究架構與方法 3
1.3研究範圍與限制 5
1.4研究內容與流程 6
第二章 文獻回顧 8
2.1列車時刻表相關文獻 8
2.2多目標決策分析方法之探討 19
2.3新模糊測度方法之探討 22
2.4本章小結 29
第三章 捷運列車排班班距模式建構 31
3.1模式建構概念及基本假設 31
3.2建構多目標規劃模式 34
3.3應用新模糊測度方法建構偏好結構模式 39
3.4本章小結 44
第四章 案例應用與結果分析 46
4.1案例背景與特性說明 46
4.2多目標規劃模式分析結果 49
4.3應用新模糊測度方法建構偏好結構結果 54
4.4結果分析與探討 64
4.5本章小結 70
第五章 結論與建議 72
5.1結論 72
5.2建議 75
參考文獻 77

一、中文部分
1、 郭定,「以整數規劃法作列車班次排點」,國立交通大學資訊工程研究所碩士論文,民國85年6月。
2、 黃哲旭,「捷運鐵路列車模擬模式之研究」,國立成功大學交通管理學系碩士論文,民國85年6月。
3、 游雅惠,「捷運列車排班問題之研究-以台北捷運淡水-新店線為例」,國立交通大學運輸工程與管理學系碩士論文,民國89年6月。
4、 楊宗憲,「應用模糊測度與模糊積分於方案評估之研究-以台灣自行生產軌道組件之評估為例」,國立台灣海洋大學河海工程學系碩士論文,民國九十年六月。
5、 劉浚明,「數學規劃-理論與實務」,國立編譯館,民國84年9月初版。
6、 蘇昭銘、程培倫、郭旻鑫,「捷運系統列車排程決策支援系統」,運輸計劃,第30卷第2期,頁409-437,民國90年6月。
7、 羅敏綺,「隨機需求下捷運系統營運模擬模式之構建-以台北市捷運木柵線為例」,國立成功大學交通管理碩士論文,民國87年6月。
二、英文部分
1、 Assad, A.A. (1980) Models for Rail Transportation, Transportation Research A 14, 205-220
2、 Chen, Y.W., Tzeng, G.H., (2001), Using Fuzzy Integral for Evaluating Subjectively Perceived Travel Costs in a Traffic Assignment Model, European Journal of Operational Research 130,653-664.
3、 Chiang, T.W., Hau, H.Y., Chiang, H.M., Ko, S.Y. and Hsieh C.H. (1998), Knowledge-Based System for Railway Scheduling, Data & Knowledge Engineering 27, 289-312.
4、 Cohon, J.L. (1978), Multiobjective Programming and Planning, Academic Press, New York.
5、 Ferreira, L. (1997), Planning Australian freight Rail Operations: An Overview, Transportation Research A 31(4), 335-348.
6、 Hallowell, S.F. and Patrick, T.H. (1998), Predicting On-Time performance in Scheduled Railroad Operations: Methodology and Application to Train Scheduling, Transportation Research A 32(4), 279-295.
7、 Higgins, A., Kozan, E. and Ferreira L. (1996), Optimal Scheduling of Trains on a Single Line Track, Transportation Research B 30(2), 147-161.
8、 Jovanovic, D. and Patrick, T.H. (1991a), Decision Support System for Train Dispatching: An Optimization-Based Methodology, Transportation Research Record 1314, 31-40.
9、 Jovanovic, D. and Patrick, T.H. (1991b), Tactical scheduling of Rail Operations: the SCAN I System, Transportation Science 25, 46-64.
10、 Kraay, D.R. and Patrick, T.H. (1995), Real-Time Scheduling of Freight Railroads, Transportation Research B 29(3), 213-229.
11、 Lamma, E., Mello, P. and Milano M. (1997), A Distributed Constraint-based Scheduler, Artificial Intelligence in Engineering 11, 91-105.
12、 Petersen, E.R., Taylor, A.J. and Martland C.D. (1986), An Introduction to Computer-Assisted Train Dispatch, Journal of Advanced Transportation 20:1, 63-72.
13、 Shiau, T.A. and Yang, T.H. (2003), A New Fuzzy Measure Approach to Improve the Efficiency of Multiple Criteria Evaluation, submitted to Fuzzy Sets and Systems.
14、 Sugeno, M. (1974), Theory of Fuzzy Integrals and its Applications, Thesis, Tokyo Institute of Technology, Tokyo.
15、 Szpigel,B. (1973), Optimal train scheduling on a single line railway, Operations Research 72, 344-351.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top