|
1.Smith, C.W.J., RNA:protein interactions : a practical approach. 1998, Oxford ; New York: Oxford University Press. xxv,341p. 2.Barton, N.H., Evolution. 2007, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. xiv, 833 p. 3.Hertel, K.J. and B.R. Graveley, RS domains contact the pre-mRNA throughout spliceosome assembly. Trends in Biochemical Sciences, 2005. 30(3): p. 115-118. 4.Noller, H.F., RNA structure: Reading the ribosome. Science, 2005. 309(5740): p. 1508-1514. 5.Moras, D., Structural and functional relationships between aminoacyl-tRNA synthetases. Trends in Biochemical Sciences, 1992. 17(4): p. 159-164. 6.Morozova, N., et al., Protein-RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures. Bioinformatics, 2006. 22(22): p. 2746-2752. 7.Shulman-Peleg, A., et al., Prediction of interacting single-stranded RNA bases by protein-binding patterns. Journal of Molecular Biology, 2008. 379(2): p. 299-316. 8.Elliott, D. and M. Ladomery, Molecular biology of RNA. 2011, Oxford ; New York: Oxford University Press. 441 p. 9.Sucheck, S.J. and C.H. Wong, RNA as a target for small molecules. Current Opinion in Chemical Biology, 2000. 4(6): p. 678-686. 10.Gherghe, C.M., et al., Native-like RNA Tertiary Structures Using a Sequence-Encoded Cleavage Agent and Refinement by Discrete Molecular Dynamics. Journal of the American Chemical Society, 2009. 131(7): p. 2541-2546. 11.Jones, S. and J.M. Thornton, Prediction of protein-protein interaction sites using patch analysis. Journal of Molecular Biology, 1997. 272(1): p. 133-143. 12.Marcotte, E.M., et al., Detecting protein function and protein-protein interactions from genome sequences. Science, 1999. 285(5428): p. 751-753. 13.Jones, S., et al., Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. Nucleic Acids Research, 2003. 31(24): p. 7189-7198. 14.Ahmad, S., M.M. Gromiha, and A. Sarai, Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics, 2004. 20(4): p. 477-486. 15.Crick, F., Central Dogma of Molecular Biology. Nature, 1970. 227(5258): p. 561-563. 16.Li, J.L., et al., Darwinian Evolution of Prions in Cell Culture. Science, 2010. 327(5967): p. 869-872. 17.Draper, D.E., Protein-Rna Recognition. Annual Review of Biochemistry, 1995. 64: p. 593-620. 18.Jeong, E., I.F. Chung, and S. Miyano, A neural network method for identification of RNA-interacting residues in protein. Genome Informatics, 2004. 15(1): p. 105-116. 19.Rost, B. and C. Sander, Prediction of Protein Secondary Structure at Better Than 70-Percent Accuracy. Journal of Molecular Biology, 1993. 232(2): p. 584-599. 20.Jeong, E. and S. Miyano, A weighted profile based method for protein-RNA interacting residue prediction. Transactions on Computational Systems Biology Iv, 2006. 3939: p. 123-139. 21.Wang, L.J. and S.J. Brown, BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Research, 2006. 34: p. W243-W248. 22.Terribilini, M., et al., RNABindR: a server for analyzing and predicting RNA-binding sites in proteins. Nucleic Acids Research, 2007. 35: p. W578-W584. 23.Berman, H.M., et al., The Protein Data Bank. Acta Crystallographica Section D-Biological Crystallography, 2002. 58(Pt 6 No 1): p. 899-907. 24.Raghava, G.P.S., M. Kumar, and A.M. Gromiha, Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins-Structure Function and Bioinformatics, 2008. 71(1): p. 189-194. 25.Wang, Y., et al., PRINTR: Prediction of RNA binding sites in proteins using SVM and profiles. Amino Acids, 2008. 35(2): p. 295-302. 26.Tong, J., P. Jiang, and Z.H. Lu, RISP: A web-based server for prediction of RNA-binding sites in proteins. Computer Methods and Programs in Biomedicine, 2008. 90(2): p. 148-153. 27.Sung, T.Y., et al., Predicting RNA-binding sites of proteins using support vector machines and evolutionary information. BMC Bioinformatics, 2008. 9. 28.Spriggs, R.V., et al., Protein function annotation from sequence: prediction of residues interacting with RNA. Bioinformatics, 2009. 25(12): p. 1492-1497. 29.Adamczak, R., A. Porollo, and J. Meller, Accurate prediction of solvent accessibility using neural networks-based regression. Proteins-Structure Function and Bioinformatics, 2004. 56(4): p. 753-767. 30.Wang, L.J., et al., BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Systems Biology, 2010. 4 Suppl 1: p. S3. 31.Zhang, T., et al., Analysis and Prediction of RNA-Binding Residues Using Sequence, Evolutionary Conservation, and Predicted Secondary Structure and Solvent Accessibility. Current Protein & Peptide Science, 2010. 11(7): p. 609-628. 32.Dor, O. and Y.Q. Zhou, Real-SPINE: An integrated system of neural networks for real-value prediction of protein structural properties. Proteins-Structure Function and Bioinformatics, 2007. 68(1): p. 76-81. 33.Huang, Y.F., et al., Predicting RNA-binding residues from evolutionary information and sequence conservation. BMC Genomics, 2010. 11 Suppl 4: p. S2. 34.Hsu, C.M., C.Y. Chen, and B.J. Liu, WildSpan: mining structured motifs from protein sequences. Algorithms for Molecular Biology, 2011. 6(1): p. 6. 35.Wang, C.C., et al., Identification of RNA-binding sites in proteins by integrating various sequence information. Amino Acids, 2011. 40(1): p. 239-248. 36.Altschul, S.F., et al., Basic Local Alignment Search Tool. Journal of Molecular Biology, 1990. 215(3): p. 403-410. 37.Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997. 25(17): p. 3389-3402. 38.Draper, D.E., Themes in RNA-protein recognition. Journal of Molecular Biology, 1999. 293(2): p. 255-270. 39.Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 1999. 292(2): p. 195-202. 40.Ouali, M. and R.D. King, Cascaded multiple classifiers for secondary structure prediction. Protein Science, 2000. 9(6): p. 1162-1176. 41.Daughdrill, G.W., L.J. Hanely, and F.W. Dahlquist, The c-terminal half of the anti-sigma factor FlgM contains a dynamic equilibrium solution structure favoring helical conformations. Biochemistry, 1998. 37(4): p. 1076-1082. 42.Weiss, M.A., et al., Folding Transition in the DNA-Binding Domain of Gcn4 on Specific Binding to DNA. Nature, 1990. 347(6293): p. 575-578. 43.Dunker, A.K., et al., Intrinsic disorder and protein function. Biochemistry, 2002. 41(21): p. 6573-6582. 44.Ward, J.J., et al., The DISOPRED server for the prediction of protein disorder. Bioinformatics, 2004. 20(13): p. 2138-2139. 45.Breiman, L., Random forests. Machine Learning, 2001. 45(1): p. 5-32. 46.Liaw, A. and M. Wiener, Classification and Regression by randomForest. R News, 2002. 2(3): p. 18-22. 47.Cortes, C. and V. Vapnik, Support-Vector Networks. Machine Learning, 1995. 20(3): p. 273-297. 48.Chang, C.-C. and C.-J. Lin, LIBSVM: a library for support vector machines. 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 49.Maetschke, S.R. and Z. Yuan, Exploiting structural and topological information to improve prediction of RNA-protein binding sites. BMC Bioinformatics, 2009. 10: p. 341. 50.Spriggs, R.V. and S. Jones, RNA-binding residues in sequence space: Conservation and interaction patterns. Computational Biology and Chemistry, 2009. 33(5): p. 397-403. 51.Finn, R.D., et al., The Pfam protein families database. Nucleic Acids Research, 2010. 38: p. D211-D222.
|