跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳鑫封
研究生(外文):Chen, Hsin-Fong
論文名稱:利用低溫光激螢光光譜偵測半導體微量雜質濃度
論文名稱(外文):Determination of trace impurity concentration in semiconductor by low-temperature photoluminescence measurements
指導教授:張文豪張文豪引用關係
指導教授(外文):Chang, Wen-Hao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:43
中文關鍵詞:光激發螢光光譜參雜濃度矽晶圓稀磁半導體氮化鎵參雜錳
外文關鍵詞:Photoluminescneceimpurity concentrationsilicon wafersdilute magnetic semiconductorManganese doped gallium nitride
相關次數:
  • 被引用被引用:5
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本實驗第一部分利用光激螢光光譜分析矽晶圓中微量III族或V族雜質的種類與濃度。在低溫低激發功率的條件下,可清楚觀察到自由激子發光以及受雜質原子吸引的束縛激子發光。其中束縛激子與自由激子發光強度的比值有隨雜質濃度上升而增加的特性,其關聯性相當接近於線性增加。透過標準樣品校正,我們測得雜質濃度介於1011~1014 cm-3間的螢光比例。藉由此方法,我們可分析未知樣品的雜質種類及濃度。論文第二部分利用光激螢光光譜與反射光譜量測氮化鎵中錳原子濃度與對其能隙的影響。首先我們利用光激螢光光譜觀察到自由激子能量有隨錳濃度上升而增加的現象,證明了p-d交換作用在此材料中扮演了關鍵角色。接著利用反射光譜可量得三價猛的吸收,我們發現其隨參雜濃度有線性上升的現象。
The species and concentration of trace III-V impurity in silicon wafers are determined by photoluminescence (PL). At low temperature and low excitation conditions, the emission of free exciton (FE) and impurity-bound exciton (BE) could be clearly observed. In particularly, the intensity ratio between BE and FE increases with increasing impurity concentration, having a correlation close to linear dependence. The intensity ratio for impurity concentration between 1011~1014 cm-3 have been measured using calibration samples, by which the impurity species and concentration in silicon wafers can be determined. In the second part, the Mn concentration in GaN is determined by reflectance spectra, and the impact of Mn on bandgap is measured by PL. First, the increasing FE energy with the increasing Mn concentration is observed by PL, indicating the p-d exchange interaction plays a very important role in this material. Then, the intra-atomic absorption of Mn3+ can be measured by reflectance spectra, the concentration of Mn3+ has a linear dependence on the Mn incorporation.
摘要 .................................................... i
Abstract ................................................ ii
致謝 .................................................. iii
圖目錄 ................................................. vi
表目錄 ............................................... viii
第一章序論 ............................................. 1
1.1實驗背景 ............................................. 1
1.2 實驗動機 ................................................................................... 4
第二章 實驗架構 ........................................ 7
2.1 光激發螢光 ................................................................................ 7
2.2 矽晶圓樣品介紹 ...................................................................... 10
2.3 錳參雜氮化鎵樣品製備 .......................................................... 12
第三章 實驗原理、結果與討論 ............................ 14
3.1 實驗原理介紹 .......................................................................... 15
3.1.1 激子發光原理 ................................................................ 15
3.1.2 p-d軌域混成與偶合 ....................................................... 19
3.2 矽晶圓參雜濃度測量 .............................................................. 21
3.2.1 激發功率變化矽晶圓光譜譜線 ..................................... 21 iv
3.2.2 激發功率變化與發光強度 ............................................. 24
3.2.3 不同濃度矽晶圓光譜 .................................................... 26
3.2.4 校正曲線 ........................................................................ 28
3.2.5 樣品濃度量測 ................................................................ 30
3.3 氮化鎵參雜過鍍金屬錳濃度測量 ........................................... 32
3.3.1 氮化鎵參雜錳光譜 ........................................................ 32
3.3.2 自由激子能量藍移分析 ................................................. 34
3.3.3原子內部能階分裂光激螢光光譜與反射測量 ............... 37
第四章結論 ............................................ 42
參考文獻 ............................................... 43
[ 1] Neamen “Semiconductor physics and devices” 4th edition McGraw Hill (2012)
[ 2] 胡裕民, “III-V 稀磁性半導體薄膜之研究與發展” (2004)
[ 3] 潘扶民, “積體電路分析量測技術的現況與未來發展” (1999)
[ 4] Michio Tajima, Appl. Phys. Lett. 32, 719 (1978)
[ 5] P. McL. Colley and E. C. Lightowlers, Semicond. Sci. Technol. 2, 157 (1987)
[ 6] I. Broussel, J. A. H. Stotz, and M. L. W. Thewalt, J. Appl. Phys. 92, 5913 (2002)
[ 7] Ivan Pelant “Luminescence spectroscopy of semiconductors” 1st edition Oxford (2012)
[ 8] T. Dietl, Phys. Rev. B 77, 085208 (2008)
[ 9] C. Benoit a la Guillaume, D. Scalbert and T. Dietl, Phys. Rev. B 46, 9853 (1992)
[ 10] Alex Zunger and U. Lindefelt, Phys. Rev. B 27, 1191 (1983)
[ 11] R. B. Hammond, T. C. Mcoill, and J. W. Mayer. Phys. Rev. B 13, 3566 (1976)
[ 12] K. Kosai and M. Gershcnzon, Phys. Rev. B 9, 723 (1974)
[ 13] B. Monemar, Materials Science and Engineering B 59, 122 (1999)
[ 14] J. Suffczy´nski, A. Grois, W. Pacuski, A. Golnik, J. A. Gaj,
A. Navarro-Quezada, B. Faina, T. Devillers, and A. Bonanni,
Phys. Rev. B 83,094421 (2011)
[ 15] Priya Mahadevan and Alex Zunger, Phys. Rev. B 69,115211 (2004)
[ 16] J. Zenneck, T. Niermann, D. Mai, M. Roever, M. Kocan, J. Malindretos, M. Seibt, and A. Rizzi, J. Appl. Phys. 101, 063504 (2007)
[ 17] J. Griffiths, “Introduction to electrodynamics” 3rd edition Pearson (2008)
[ 18] A. Bonanni, M. Sawicki, T. Devillers, W. Stefanowicz, B. Faina, Tian Li, T. E. Winkler, D. Sztenkiel, A. Navarro-Quezada, M. Rovezzi,
R. Jakieła, A. Grois, M. Wegscheider, W. Jantsch, J. Suffczy´nski,
F. D’Acapito, A. Meingast, G. Kothleitner, and T. Dietl, Phys. Rev. B 84, 035206 (2011)
43
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top