跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴慧綺
研究生(外文):Hui-Chi Lai
論文名稱:柑橘類黃酮藥物促進PC12細胞分化之分子機制
論文名稱(外文):Citrus polymethoxyflavone,5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone, promotes neuronal differentiation through cAMP/PKA/CREB signaling pathway in PC12 cells
指導教授:顏瑞鴻顏瑞鴻引用關係
指導教授(外文):Jui-Hung Yen
學位類別:碩士
校院名稱:慈濟大學
系所名稱:分子生物暨人類遺傳學系碩士班
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:61
中文關鍵詞:神經退化性疾病5-OH-HxMF多甲基氧類黃酮CREBPKA
外文關鍵詞:Neurodegenerative diseases5-OH-HxMFPMFCREBPKA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:534
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
神經退化性疾病例如阿茲海默症為神經細胞發生漸進式退化與功能漸失,進而發生神經細胞死亡等現象所引起的疾病,影響腦部的神經退化性疾病常見病人大腦中神經細胞功能受到影響,並且伴隨認知與學習記憶的功能退化。已有許多文獻發現,蔬果富含的類黃酮化合物例如柑橘類黃酮可以通過血腦障壁,並具有類似神經滋養因子的活性,促進腦部神經新生、神經突出分枝生長、神經分化與神經存活等功能。本論文的主要目的為探討柑橘多甲基氧類黃酮5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF)是否具有促進神經細胞突出分枝生長(neurite outgrowth)與分化(differentiation)等類似神經滋養因子的功能,並且研究其神經滋養功效上參與的分子訊息路徑。
於本論文的研究結果中,我們發現柑橘多甲基氧類黃酮化合物5-OH-HxMF具有誘導PC12細胞突出分枝生長的功能。接著我們利用即時定量聚合酶鏈鎖反應以及西方墨點法分析發現,5-OH-HxMF誘導PC12細胞突出分枝生長時,伴隨著神經細胞分化標記基因growth associated protein-43 (GAP-43) mRNA與蛋白質的表達,此結果證明5-OH-HxMF具有促進神經細胞分化的能力。接下來我們進一步研究5-OH-HxMF促進神經細胞分化的分子訊息路徑。首先,我們針對調控神經分化相關的cAMP response element binding protein (CREB)蛋白質進行分析,我們利用西方墨點法分析CREB磷酸化的情形,結果發現在PC12細胞中5-OH-HxMF會增加磷酸化CREB的量,並且經由抑制劑抑制磷酸化CREB活性的實驗結果證明,5-OH-HxMF活化的CREB與CREB binding protein(CBP)形成複合體,進一步與CRE DNA序列結合,進而活化CRE下游所調控基因的轉錄作用。
接下來,我們利用可能影響CREB磷酸化的分子訊息路徑抑制劑,包括U0126、 Bisindolylmaleimide I、LY294002 、KN62、SQ22536與 H-89等,探討5-OH-HxMF可能經由哪一條分子訊息路徑活化CREB。我們的實驗結果發現,5-OH-HxMF 主要是藉由影響cAMP與protein kinase A (PKA)訊息路徑活化CREB,並促進CRE調控下游基因的轉錄作用,進而促進PC12細胞突出分枝生長與分化,然而我們也發現5-OH-HxMF活化CREB的活性可能與ERK/MAPK、PI3-K、PKC與CaMKII等分子訊息路徑無關。此外,我們進一步發現5-OH-HxMF快速增加PC12細胞內cAMP的量以及PKA之活性,最後我們抑制5-OH-HxMF在PC12細胞內誘導產生的cAMP以及PKA活性,發現也抑制了5-OH-HxMF 所誘導PC12細胞突出分枝生長的現象,此結果證明5-OH-HxMF經由cAMP/PKA分子訊息路徑活化CREB,進而影響PC12細胞突出分枝生長的現象。
總結本論文的實驗結果,5-OH-HxMF 具有類似神經滋養因子誘導神經分化的功能,其分子機轉為5-OH-HxMF藉由增加細胞內cAMP的量,進而活化PKA活性,進一步促進CREB磷酸化,活化的CREB與CBP結合後,進一步結合具有CRE DNA序列的基因,並促進CRE調控下游與神經分化相關基因表達,促使PC12細胞突出分枝生長與神經分化。本研究結果將可以提供柑橘類黃酮化合物未來應用於神經退化性疾病預防與治療藥物開發的基礎。
Neurodegenerative diseases such as Alzheimer’s disease (AD) are characterized by the progressive degeneration, dysfunction and loss of neuronal cells in the nerve system. Patients with neuronal dysfunction in the brain accompanied losses of cognition and learning memory. Recently, several evidences suggest that the neurotrophic action of dietary flavonoids, such as citrus flavonoids, may transverse the blood-brain-barrier (BBB) and exert beneficial effects on neurogenesis, neuronal differentiation, neuronal survival, and may prevent cognitive losses associated with neurodegeneration. The aim of this study is to investigate the neurotrophic effects and mechanism of 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF), a citrus hydroxyl polymethoxyflavone (PMF), on promoting neuronal cell neurite outgrowth and differentiation.
In the present study, we found that 5-OH-HxMF significantly induces neurite outgrowth along with increased mRNA and protein expression of the neuronal cell differentiation marker, growth-associated protein-43 (GAP-43), in PC12 cells. These results indicated that 5-OH-HxMF could promote neuronal cell differentiation. It is known that activation of cAMP response element binding protein (CREB) may play an essential role in neuronal cell differentiation, we investigated whether 5-OH-HxMF activate CREB in PC12 cells. We found that 5-OH-HxMF stimulated phosphorylation of CREB protein and activated the transcription of cAMP response element (CRE)-mediated luciferase reporter gene, which was inhibited by KG-501, a specific antagonist for the CREB-CBP complex. To identify the molecular signaling pathways involved in the CREB activation, the pathway selectively specific inhibitors including U0126, Bisindolylmaleimide I, LY294002, KN62, SQ22536 and H-89 were used. Our results show that 5-OH-HxMF induced CREB activation significantly attenuated by adenylate cyclase inhibitor (SQ22536) and protein kinase A (PKA) inhibitor (H-89), respectively. Moreover, we also found that CREB activation is independent on the ERK / MAPK, PI3-K, PKC and CaMK II signaling pathways. Our results indicated that 5-OH-HxMF stimulated CREB phosphorylation through the cAMP/PKA pathway. Consistently, our results show that 5-OH-HxMF increased the level of intracellular cAMP rapidly and downstream component, PKA activity in PC12 cells. Finally, we found that the adenylate cyclase inhibitor SQ22536 and the PKA inhibitor H-89 significantly blocked the potentiation of 5-OH-HxMF-induced neurite outgrowth.
In conclusion, the above findings reveal that 5-OH-HxMF possessed the neurotrophic action for promoting neurite outgrowth and neuronal cell differentiation. 5-OH-HxMF induced neurite outgrowth via increases of intracellular cAMP levels and PKA activity, further enhanced CREB phosphorylation and CRE dependent transcription in PC12 cells. This study thus enhances our understanding on 5-OH-HxMF may be beneficial for prevention and therapeutic use for neurodegenerative disorders.
中文摘要 I
英文摘要 III
緒論 1
1.神經退化性疾病(neurodegenerative disorders)的重要性 1
2.神經滋養因子(neurotrophic factors)與神經退化性疾病 1
3.Cyclic-AMP response element binding protein (CREB)蛋白質分子影響神經細胞之功能 2
4. 影響CREB磷酸化之分子訊息路徑 3
5.具有類似神經滋養與促進神經細胞功能之類黃酮化合物 (flavonoids)研究 5
6.柑橘類黃酮(Citrus flavonoids)之研究 6
7.研究動機與目的 7
材料與方法 9
1.試劑與藥品 9
2.細胞培養(Cell culture) 11
3.細胞存活率測試(MTT assay) 11
4.Neurite outgrowth的分析 12
5.抑制劑的使用 13
6.神經細胞分化標記(marker)基因的分析 15
7.西方墨點法(Western blotting) 16
8.Reporter assay 18
9.cAMP量的測定 19
10.PKA avtivity測定 21
11.統計分析 23
結果 24
1.柑橘類黃酮化合物5-OH-HxMF與nobiletin對PC12細胞毒性之影響 24
2.柑橘類黃酮化合物5-OH-HxMF與nobiletin對PC12細胞 neurite outgrowth之影響 24
3.柑橘類黃酮化合物5-OH-HxMF對PC12細胞神經分化標記基因(neuronal differentiation marker) mRNA及Protein表達之影響 25
4.柑橘類黃酮化合物5-OH-HxMF與nobiletin對CREB磷酸化的影響 26
5.柑橘類黃酮化合物5-OH-HxMF對cyclic-AMP response element (CRE) 調控轉錄作用(transcription)之影響 27
6.柑橘類黃酮化合物活化CREB對PC12細胞neurite outgrowth 之影響 28
7.影響5-OH-HxMF 活化CREB之分子訊息路徑 29
8.柑橘類黃酮化合物5-OH-HxMF對細胞內cAMP 量及PKA活性之影響 30
9.柑橘類黃酮化合物5-OH-HxMF活化cAMP與PKA路徑對PC12細胞neurite outgrowth之影響 30
討論 32
參考文獻 54
1.Hardy, J. (2001) The genetic causes of neurodegenerative diseases, J Alzheimers Dis 3, 109-116.
2.Lu, B., and Vogel, H. (2009) Drosophila models of neurodegenerative diseases, Annu Rev Pathol 4, 315-342.
3.Pappolla, M. A., Chyan, Y. J., Omar, R. A., Hsiao, K., Perry, G., Smith, M. A., and Bozner, P. (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer's disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo, Am J Pathol 152, 871-877.
4.Butterfield, D., Castegna, A., Pocernich, C., Drake, J., Scapagnini, G., and Calabrese, V. (2002) Nutritional approaches to combat oxidative stress in Alzheimer's disease, J Nutr Biochem 13, 444.
5.Ziv, I., Melamed, E., Nardi, N., Luria, D., Achiron, A., Offen, D., and Barzilai, A. (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons--a possible novel pathogenetic mechanism in Parkinson's disease, Neurosci Lett 170, 136-140.
6.Mattson, M. P. (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease, Ann N Y Acad Sci 1144, 97-112.
7.Castren, E., and Rantamaki, T. (2010) The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity, Dev Neurobiol 70, 289-297.
8.Rangasamy, S. B., Soderstrom, K., Bakay, R. A., and Kordower, J. H. (2010) Neurotrophic factor therapy for Parkinson's disease, Prog Brain Res 184, 237-264.
9.Bui, N. T., Konig, H. G., Culmsee, C., Bauerbach, E., Poppe, M., Krieglstein, J., and Prehn, J. H. (2002) p75 neurotrophin receptor is required for constitutive and NGF-induced survival signalling in PC12 cells and rat hippocampal neurones, J Neurochem 81, 594-605.
10.Ferrer, I., Goutan, E., Marin, C., Rey, M. J., and Ribalta, T. (2000) Brain-derived neurotrophic factor in Huntington disease, Brain Res 866, 257-261.
11.Yoo, Y. M., Kim, Y. J., Lee, U., Paik, D. J., Yoo, H. T., Park, C. W., Kim, Y. B., Lee, S. G., Kim, W. K., and Yoo, C. J. (2003) Neurotrophic factor in the treatment of Parkinson disease, Neurosurg Focus 15, ECP1.
12.Gilgun-Sherki, Y., Melamed, E., and Offen, D. (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier, Neuropharmacology 40, 959-975.
13.Ohta, H., Arai, S., Akita, K., Ohta, T., and Fukuda, S. (2011) Neurotrophic effects of a cyanine dye via the PI3K-Akt pathway: attenuation of motor discoordination and neurodegeneration in an ataxic animal model, PLoS One 6, e17137.
14.Bito, H., Deisseroth, K., and Tsien, R. W. (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression, Cell 87, 1203-1214.
15.Lonze, B. E., and Ginty, D. D. (2002) Function and regulation of CREB family transcription factors in the nervous system, Neuron 35, 605-623.
16.Rouaux, C., Loeffler, J. P., and Boutillier, A. L. (2004) Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders, Biochem Pharmacol 68, 1157-1164.
17.Weeber, E. J., and Sweatt, J. D. (2002) Molecular neurobiology of human cognition, Neuron 33, 845-848.
18.Mayr, B., and Montminy, M. (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB, Nat Rev Mol Cell Biol 2, 599-609.
19.Sheng, M., Thompson, M. A., and Greenberg, M. E. (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases, Science 252, 1427-1430.
20.Goodman, R. H., and Smolik, S. (2000) CBP/p300 in cell growth, transformation, and development, Genes Dev 14, 1553-1577.
21.Espana, J., Valero, J., Minano-Molina, A. J., Masgrau, R., Martin, E., Guardia-Laguarta, C., Lleo, A., Gimenez-Llort, L., Rodriguez-Alvarez, J., and Saura, C. A. (2010) beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1, J Neurosci 30, 9402-9410.
22.Caccamo, A., Maldonado, M. A., Bokov, A. F., Majumder, S., and Oddo, S. (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease, Proc Natl Acad Sci U S A 107, 22687-22692.
23.Kaplan, D. R., and Miller, F. D. (2000) Neurotrophin signal transduction in the nervous system, Curr Opin Neurobiol 10, 381-391.
24.Pang, L., Sawada, T., Decker, S. J., and Saltiel, A. R. (1995) Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor, J Biol Chem 270, 13585-13588.
25.Qu, Z., Wolfraim, L. A., Svaren, J., Ehrengruber, M. U., Davidson, N., and Milbrandt, J. (1998) The transcriptional corepressor NAB2 inhibits NGF-induced differentiation of PC12 cells, J Cell Biol 142, 1075-1082.
26.Johnson, G. L., and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases, Science 298, 1911-1912.
27.Nagase, H., Yamakuni, T., Matsuzaki, K., Maruyama, Y., Kasahara, J., Hinohara, Y., Kondo, S., Mimaki, Y., Sashida, Y., Tank, A. W., Fukunaga, K., and Ohizumi, Y. (2005) Mechanism of neurotrophic action of nobiletin in PC12D cells, Biochemistry 44, 13683-13691.
28.Andjelkovic, M., Suidan, H. S., Meier, R., Frech, M., Alessi, D. R., and Hemmings, B. A. (1998) Nerve growth factor promotes activation of the alpha, beta and gamma isoforms of protein kinase B in PC12 pheochromocytoma cells, Eur J Biochem 251, 195-200.
29.Jackson, T. R., Blader, I. J., Hammonds-Odie, L. P., Burga, C. R., Cooke, F., Hawkins, P. T., Wolf, A. G., Heldman, K. A., and Theibert, A. B. (1996) Initiation and maintenance of NGF-stimulated neurite outgrowth requires activation of a phosphoinositide 3-kinase, J Cell Sci 109 ( Pt 2), 289-300.
30.Wang, X., Chen, L., Maures, T. J., Herrington, J., and Carter-Su, C. (2004) SH2-B is a positive regulator of nerve growth factor-mediated activation of the Akt/Forkhead pathway in PC12 cells, J Biol Chem 279, 133-141.
31.Perkinton, M. S., Sihra, T. S., and Williams, R. J. (1999) Ca(2+)-permeable AMPA receptors induce phosphorylation of cAMP response element-binding protein through a phosphatidylinositol 3-kinase-dependent stimulation of the mitogen-activated protein kinase signaling cascade in neurons, J Neurosci 19, 5861-5874.
32.Rosenberg, D., Groussin, L., Jullian, E., Perlemoine, K., Bertagna, X., and Bertherat, J. (2002) Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues, Ann N Y Acad Sci 968, 65-74.
33.Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A. J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein, Cell 79, 59-68.
34.Navakkode, S., Sajikumar, S., and Frey, J. U. (2004) The type IV-specific phosphodiesterase inhibitor rolipram and its effect on hippocampal long-term potentiation and synaptic tagging, J Neurosci 24, 7740-7744.
35.Vitolo, O. V., Sant'Angelo, A., Costanzo, V., Battaglia, F., Arancio, O., and Shelanski, M. (2002) Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling, Proc Natl Acad Sci U S A 99, 13217-13221.
36.Roberson, E. D., English, J. D., Adams, J. P., Selcher, J. C., Kondratick, C., and Sweatt, J. D. (1999) The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus, J Neurosci 19, 4337-4348.
37.Nguyen, T. V., Yao, M., and Pike, C. J. (2009) Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons, Brain Res 1298, 1-12.
38.Jusuf, A. A., Rina, S., Sakagami, H., and Terashima, T. (2002) Expression of Ca2+/calmodulin-dependent protein kinase (CaMK) Ibeta2 in developing rat CNS, Neuroscience 109, 407-420.
39.Rubin, R. P. (1970) The role of calcium in the release of neurotransmitter substances and hormones, Pharmacol Rev 22, 389-428.
40.Ghosh, A., and Greenberg, M. E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences, Science 268, 239-247.
41.Singh, M., Arseneault, M., Sanderson, T., Murthy, V., and Ramassamy, C. (2008) Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms, J Agric Food Chem 56, 4855-4873.
42.Youdim, K. A., Qaiser, M. Z., Begley, D. J., Rice-Evans, C. A., and Abbott, N. J. (2004) Flavonoid permeability across an in situ model of the blood-brain barrier, Free Radic Biol Med 36, 592-604.
43.Wang, Y., Wang, L., Wu, J., and Cai, J. (2006) The in vivo synaptic plasticity mechanism of EGb 761-induced enhancement of spatial learning and memory in aged rats, Br J Pharmacol 148, 147-153.
44.Diamond, B. J., Shiflett, S. C., Feiwel, N., Matheis, R. J., Noskin, O., Richards, J. A., and Schoenberger, N. E. (2000) Ginkgo biloba extract: mechanisms and clinical indications, Arch Phys Med Rehabil 81, 668-678.
45.Barros, D., Amaral, O. B., Izquierdo, I., Geracitano, L., do Carmo Bassols Raseira, M., Henriques, A. T., and Ramirez, M. R. (2006) Behavioral and genoprotective effects of Vaccinium berries intake in mice, Pharmacol Biochem Behav 84, 229-234.
46.Li, M., Tsang, K. S., Choi, S. T., Li, K., Shaw, P. C., and Lau, K. F. (2011) Neuronal differentiation of C17.2 neural stem cells induced by a natural flavonoid, baicalin, Chembiochem 12, 449-456.
47.Weinreb, O., Mandel, S., Amit, T., and Youdim, M. B. (2004) Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases, J Nutr Biochem 15, 506-516.
48.Reznichenko, L., Amit, T., Youdim, M. B., and Mandel, S. (2005) Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth, J Neurochem 93, 1157-1167.
49.Uwabe, K., Iwakawa, T., Matsumoto, M., Talkahashi, K., and Nagata, K. (2006) HU0622: a small molecule promoting GAP-43 activation and neurotrophic effects, Neuropharmacology 51, 727-736.
50.Andero, R., Heldt, S. A., Ye, K., Liu, X., Armario, A., and Ressler, K. J. (2011) Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning, Am J Psychiatry 168, 163-172.
51.Lin, C. W., Wu, M. J., Liu, I. Y., Su, J. D., and Yen, J. H. (2010) Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression, J Agric Food Chem 58, 4477-4486.
52.Li, S., Pan, M. H., Lai, C. S., Lo, C. Y., Dushenkov, S., and Ho, C. T. (2007) Isolation and syntheses of polymethoxyflavones and hydroxylated polymethoxyflavones as inhibitors of HL-60 cell lines, Bioorg Med Chem 15, 3381-3389.
53.Akao, Y., Itoh, T., Ohguchi, K., Iinuma, M., and Nozawa, Y. (2008) Interactive effects of polymethoxy flavones from Citrus on cell growth inhibition in human neuroblastoma SH-SY5Y cells, Bioorg Med Chem 16, 2803-2810.
54.Li, S., Lo, C. Y., and Ho, C. T. (2006) Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel, J Agric Food Chem 54, 4176-4185.
55.Yoshimizu, N., Otani, Y., Saikawa, Y., Kubota, T., Yoshida, M., Furukawa, T., Kumai, K., Kameyama, K., Fujii, M., Yano, M., Sato, T., Ito, A., and Kitajima, M. (2004) Anti-tumour effects of nobiletin, a citrus flavonoid, on gastric cancer include: antiproliferative effects, induction of apoptosis and cell cycle deregulation, Aliment Pharmacol Ther 20 Suppl 1, 95-101.
56.Wilcox, L. J., Borradaile, N. M., de Dreu, L. E., and Huff, M. W. (2001) Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP, J Lipid Res 42, 725-734.
57.Kim, S. Y., Kim, H. J., Lee, M. K., Jeon, S. M., Do, G. M., Kwon, E. Y., Cho, Y. Y., Kim, D. J., Jeong, K. S., Park, Y. B., Ha, T. Y., and Choi, M. S. (2006) Naringin time-dependently lowers hepatic cholesterol biosynthesis and plasma cholesterol in rats fed high-fat and high-cholesterol diet, J Med Food 9, 582-586.
58.Bok, S. H., Lee, S. H., Park, Y. B., Bae, K. H., Son, K. H., Jeong, T. S., and Choi, M. S. (1999) Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids, J Nutr 129, 1182-1185.
59.Jung, K. H., Ha, E., Kim, M. J., Won, H. J., Zheng, L. T., Kim, H. K., Hong, S. J., Chung, J. H., and Yim, S. V. (2007) Suppressive effects of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression by Citrus reticulata extract in RAW 264.7 macrophage cells, Food Chem Toxicol 45, 1545-1550.
60.Onozuka, H., Nakajima, A., Matsuzaki, K., Shin, R. W., Ogino, K., Saigusa, D., Tetsu, N., Yokosuka, A., Sashida, Y., Mimaki, Y., Yamakuni, T., and Ohizumi, Y. (2008) Nobiletin, a citrus flavonoid, improves memory impairment and Abeta pathology in a transgenic mouse model of Alzheimer's disease, J Pharmacol Exp Ther 326, 739-744.
61.Giachino, C., De Marchis, S., Giampietro, C., Parlato, R., Perroteau, I., Schutz, G., Fasolo, A., and Peretto, P. (2005) cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb, J Neurosci 25, 10105-10118.
62.Matsuzaki, K., Miyazaki, K., Sakai, S., Yawo, H., Nakata, N., Moriguchi, S., Fukunaga, K., Yokosuka, A., Sashida, Y., Mimaki, Y., Yamakuni, T., and Ohizumi, Y. (2008) Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus, Eur J Pharmacol 578, 194-200.
63.Nakajima, A., Yamakuni, T., Haraguchi, M., Omae, N., Song, S. Y., Kato, C., Nakagawasai, O., Tadano, T., Yokosuka, A., Mimaki, Y., Sashida, Y., and Ohizumi, Y. (2007) Nobiletin, a citrus flavonoid that improves memory impairment, rescues bulbectomy-induced cholinergic neurodegeneration in mice, J Pharmacol Sci 105, 122-126.
64.Yamamoto, Y., Shioda, N., Han, F., Moriguchi, S., Nakajima, A., Yokosuka, A., Mimaki, Y., Sashida, Y., Yamakuni, T., Ohizumi, Y., and Fukunaga, K. (2009) Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation, Brain Res 1295, 218-229.
65.Al Rahim, M., Nakajima, A., Saigusa, D., Tetsu, N., Maruyama, Y., Shibuya, M., Yamakoshi, H., Tomioka, Y., Iwabuchi, Y., Ohizumi, Y., and Yamakuni, T. (2009) 4'-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade, Biochemistry 48, 7713-7721.
66.Delaney, B., Phillips, K., Vasquez, C., Wilson, A., Cox, D., Wang, H. B., and Manthey, J. (2002) Genetic toxicity of a standardized mixture of citrus polymethoxylated flavones, Food Chem Toxicol 40, 617-624.
67.Lai, C. S., Li, S., Chai, C. Y., Lo, C. Y., Ho, C. T., Wang, Y. J., and Pan, M. H. (2007) Inhibitory effect of citrus 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mice, Carcinogenesis 28, 2581-2588.
68.Pan, M. H., Lai, Y. S., Lai, C. S., Wang, Y. J., Li, S., Lo, C. Y., Dushenkov, S., and Ho, C. T. (2007) 5-Hydroxy-3,6,7,8,3',4'-hexamethoxyflavone induces apoptosis through reactive oxygen species production, growth arrest and DNA damage-inducible gene 153 expression, and caspase activation in human leukemia cells, J Agric Food Chem 55, 5081-5091.
69.Qiu, P., Guan, H., Dong, P., Guo, S., Zheng, J., Li, S., Chen, Y., Ho, C. T., Pan, M. H., McClements, D. J., and Xiao, H. (2011) The inhibitory effects of 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone on human colon cancer cells, Mol Nutr Food Res.
70.Lin, B., Pirrung, M. C., Deng, L., Li, Z., Liu, Y., and Webster, N. J. (2007) Neuroprotection by small molecule activators of the nerve growth factor receptor, J Pharmacol Exp Ther 322, 59-69.
71.Neve, R. L., Perrone-Bizzozero, N. I., Finklestein, S., Zwiers, H., Bird, E., Kurnit, D. M., and Benowitz, L. I. (1987) The neuronal growth-associated protein GAP-43 (B-50, F1): neuronal specificity, developmental regulation and regional distribution of the human and rat mRNAs, Brain Res 388, 177-183.
72.Zuber, M. X., Goodman, D. W., Karns, L. R., and Fishman, M. C. (1989) The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells, Science 244, 1193-1195.
73.Perrone-Bizzozero, N. I., Finklestein, S. P., and Benowitz, L. I. (1986) Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro, J Neurosci 6, 3721-3730.
74.Meiri, K. F., Pfenninger, K. H., and Willard, M. B. (1986) Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones, Proc Natl Acad Sci U S A 83, 3537-3541.
75.Crino, P., Khodakhah, K., Becker, K., Ginsberg, S., Hemby, S., and Eberwine, J. (1998) Presence and phosphorylation of transcription factors in developing dendrites, Proc Natl Acad Sci U S A 95, 2313-2318.
76.Finkbeiner, S. (2000) CREB couples neurotrophin signals to survival messages, Neuron 25, 11-14.
77.Kelly, A., Mullany, P. M., and Lynch, M. A. (2000) Protein synthesis in entorhinal cortex and long-term potentiation in dentate gyrus, Hippocampus 10, 431-437.
78.Best, J. L., Amezcua, C. A., Mayr, B., Flechner, L., Murawsky, C. M., Emerson, B., Zor, T., Gardner, K. H., and Montminy, M. (2004) Identification of small-molecule antagonists that inhibit an activator: coactivator interaction, Proc Natl Acad Sci U S A 101, 17622-17627.
79.Persengiev, S. P., and Green, M. R. (2003) The role of ATF/CREB family members in cell growth, survival and apoptosis, Apoptosis 8, 225-228.
80.Li, S., Yu, H., and Ho, C. T. (2006) Nobiletin: efficient and large quantity isolation from orange peel extract, Biomed Chromatogr 20, 133-138.
81.Nagase, H., Omae, N., Omori, A., Nakagawasai, O., Tadano, T., Yokosuka, A., Sashida, Y., Mimaki, Y., Yamakuni, T., and Ohizumi, Y. (2005) Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritegenic activities, Biochem Biophys Res Commun 337, 1330-1336.
82.Roth, J. A., Horbinski, C., Higgins, D., Lein, P., and Garrick, M. D. (2002) Mechanisms of manganese-induced rat pheochromocytoma (PC12) cell death and cell differentiation, Neurotoxicology 23, 147-157.
83.Levi-Montalcini, R. (1987) The nerve growth factor 35 years later, Science 237, 1154-1162.
84.Sofroniew, M. V., Howe, C. L., and Mobley, W. C. (2001) Nerve growth factor signaling, neuroprotection, and neural repair, Annu Rev Neurosci 24, 1217-1281.
85.Dajas, F., Rivera-Megret, F., Blasina, F., Arredondo, F., Abin-Carriquiry, J. A., Costa, G., Echeverry, C., Lafon, L., Heizen, H., Ferreira, M., and Morquio, A. (2003) Neuroprotection by flavonoids, Braz J Med Biol Res 36, 1613-1620.
86.Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., and Greenberg, M. E. (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism, Neuron 20, 709-726.
87.Salton, S. R., Ferri, G. L., Hahm, S., Snyder, S. E., Wilson, A. J., Possenti, R., and Levi, A. (2000) VGF: a novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance, Front Neuroendocrinol 21, 199-219.
88.Deisseroth, K., Heist, E. K., and Tsien, R. W. (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons, Nature 392, 198-202.
89.Redmond, L., Kashani, A. H., and Ghosh, A. (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription, Neuron 34, 999-1010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊