1. 陳俊仁(1995)洋桔梗苗期溫度與植物生長調節劑對生育之影響. 中興大學碩士論文2. 廖麗雅(1993)洋桔梗涼溫育苗及微體繁殖系統之建立. 中興大學碩士論文3. Angenent, G.C., Busscher, M., Franken, J., Dons, H.J.M., and van Tunen, A.J.(1995a). Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Plant Cell 7, 505-516.
4. Angenent, G.C., Busscher, M., Franken, J., Mol, J.N.M., and van Tunen, A.J.(1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4, 983-993.
5. Angenent, G.C., and Colombo, L.(1996). Molecular control of ovule
development. Trends Plant Sci. 1, 228-232.
6. Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. (1995b). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7, 1569-1582.
7. Angenent, G.C., Franken, J., Busscher, M., Weiss, D., and van Tunen, A.J.(1994). Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33-44.
8. Bowman, J.L., Alvarez, J., Weigel, D., and Meyerowitz, E.M.(1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Dev. 119, 721-743.
9. Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M.(1989). Genes directing flower development in Arabidopsis. Plant Cell 1, 37-52.
10. Brand-Saberi, B., and Christ, B.(1999). Genetic and epigenetic control of muscle development in vertebrates. Cell Tissue Res. 296, 199-212.
11. Coen, E.S., and Meyerowitz, E.M.(1991). The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.
12. Colombo, L., Franken, J., Alexander, R., van der Krol, R., Wittich, P.E., Dons, H.J.M., and Angenent, G.C.(1997a). Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9, 703-715.
13. Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C., and van Tunen, A.J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859-1868.
14. Colombo, L., van Tunen, A.J., Dons, H.J.M., and Angenent, G.C.(1997b). Molecular control of flower development in Petunia hybrida. Adv. Bot. Res. 26, 229-250.
15. Doyle, J.J. (1998). Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci. 3, 473-478.
16. Drews, G.N., Bowman, J.L., and Meyerowitz, E.M. (1991). Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991-1002.
17. Flanagan, C.A., Hu, Y., and Ma, H.(1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10, 343-353.
18. Griesbach R. J., Semeniuk P., Roh M., and Lawson R. H.(1988). Tissue Culture in the Improvement of Eustoma. Hortsci. 23, 790-791.
19. Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F.(1994). Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76, 131-143.
20. Hasebe, M., and Banks, J.A.(1997). Evolution of MADS gene family in plants. In: Iwatsuki K, Raven PH(eds), Evolution and Diversification of Land Plants. 179-197. Springer-Verlag, Tokyo.
21. Huang, H., Tudor, M., Su, T., Zhang, Y., Hu, Y., Ma, H.(1996). DNA binding properties of two Arabidopsis MADS domain protein: binding consensus and dimmer formation. Plant Cell 8, 81-94.
22. Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-697.
23. Jack, T., Fox, G.L., and Meyerowitz, E.M.(1994). Arabidopsis homeotic gene APETALA3 ecotopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76, 703-716.
24. Jofuku, K.D., den Boer, B.G.W., van Montagu, M., and Okamuro, J.K.(1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211-1225.
25. Kramer, E.M., Dorit, R.L., and Irish, V.F.(1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genet. 149, 765-783.
26. Krüger, J., Aichinger, C., Kahmann, R., Bölker, M.(1997). A MADS-box homologue in Ustilago maydis regulates the expression of pheromone-inducible genes but is nonessential. Genet. 147, 1643-1652.
27. Kunitake, H., Nakashima, T., Mori, K., Tanaka, M., and Mii, M . ( 1995). Plant regeneration from mesophyll protoplast of lisianthus (Eustoma grandiflorum) by adding activated charcoal into protoplast culture medium. Plant Cell, Tissue and Organ Culture 43, 59-65.
28. Ledger, S.E., Deroles, S.C., Manson, D.G., Marie Bradley, J., and Given, N.K.(1997). Transformation of lisianthus (Eustoma grandiflorum). Plant Cell Rep. 16, 853-858.
29. Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11, 1007-1018.
30. Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F.(1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273-277.
31. Mcsteen, P.C.M., Vincent, C.A., Doyle, S., Carpenter, R., and Coen, E.S.(1998). Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum. Dev. 125, 2359-2369.
32. Mizukami, Y., Huang, H., Tudor, M., Hu, Y., and Ma. H.(1996). Functional Domains of Floral Regulator AGAMOUS: Characterization of the DNA Binding Domain and Analysis of Domain Negative Mutations. Plant Cell 8, 831-845.
33. Molkentin, J.D, and Olson, E.N.(1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93, 9366-9373.
34. Mushegian, A.R, and Koonin, E.V.(1996). Sequence analysis of eukaryotic developmental proteins: ancient and novel domains. Genet. 144, 817-828.
35. Münster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H., and Theissen, G.(1997). Floral homotic genes were recruited from homologous MADS box genes preexisting in common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94, 2415-2420.
36. O''Brien, I.E.W., and Lindsay, G.C.(1993). Protoplast to plants of Gentianaceae. Regeneration of lisianthus (Eustoma grandiflorum) is affected by calcium ion preconditioning, osmolality and pH of the culture media. Plant Cell, Tissue and Organ Culture 33, 31-37.
37. Okamuro, J.K., den Boer, B.G.W., and Jofuku, K.D.(1993). Regulation of Arabidopsis flower development. Plant Cell 5, 1183-1193.
38. Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., and Yanofsky, M.F.(1995). Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genet. 140, 345-356.
39. Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M.(1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93, 4793-4798.
40. Rounsley, S.D., Ditta, G.S., Yanofsky, M.F.(1995). Diverse roles for MADS box genes in Arobidopsis development. Plant Cell 7, 1259-1269.
41. Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Cote, C., Bosnich, W., Kauffeldt, C., Sunohara, G., Seguin, A., and Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J. 15, 625-634.
42. Sablowski, R.W.M., and Meyerowitz, E.M.(1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93-103.
43. Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., and Yanofsky, M.F.(1993). Identification and Molecular Characterization of ZAG1, the Maize Homolog of the Arabidopsis Floral Homeotic Gene AGAMOUS. Plant Cell 5, 729-737.
44. Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lonnig, W.E., Saedler, H., and Sommer, H.(1992). Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens - Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251-263.
45. Semeria, L., Ruffoni, B., Rabaglio, M., Genga, A., Vaira, A.M., Accotto, G.P., and Allavena A.(1996). Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 47, 67-72.
46. Shore, P., and Sharrocks, A.D.(1995). The MADS-box family of transcription factors. Eur. Biochem. 229, 1-13.
47. Takahashi, M., Nishihara, M., Yamamura, S., Nishizawa, S., Irifune, K., Morikawa, H.(1998). Stable transformation of Eustoma grandiflorum by particle bombardment. Plant Cell Reports 17, 504-507.
48. Tandre, K., Svenson, M., Svensson, M.E., and Engström. P. (1998). Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J. 15, 615-623.
49. Theissen, G., Becker, A., Rosa, A.D., Kanno, A., Kim J.T., Münster, T., Winter, K.U., and Saedler, H.(2000). A short history of MADS-box genes in plant. Plant Mol. Biol. 42, 115-149.
50. Theissen, G., Kim, J., and Saedler, H.(1996). Classification and Phylogeny of the MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484-516.
51. Theissen, G., and Saedler, H.(1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic law’ revisited. Curr Opin. Genet. Dev. 5, 628-639.
52. Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z.(1992). GLOBOSA: A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J. 11, 4693-4704.
53. van der Krol, A.R., Brunelle, A., Tsuchimoto, S., and Chua, N-H.(1993). Functional analysis of petunia floral homeotic MADS box gene Pmads1. Genet. Dev. 7, 1214-1228.
54. Weigel, D., and Meyerowitz, E.M.(1994). The ABCs of floral homeotic genes. Cell 78, 203-209.
55. Winter, K.U., Becker, A., Münster, T., Kim, J.T., Saedler, H., and Theissen G.(1999). MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA 96, 7342-7347.
56. Yang, C-H., Cheng, L-J., and Sung, Z.R (1995). Genetic regulation of shoot development in Arabidopsis: the role of EMF genes. Dev. Biol. 169, 421-435.
57. Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M.(1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35-39.
57. Yabana, N., and Yamamoto, M. (1996). Schizosaccharomyces pombe mapl+ encodes a MADS-box-family protein required for cell-type-specific gene expression. Mol. Cell. Biol. 16, 3420-3428.
58. Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A., and Teeri, T.H.(1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17, 51-62.
59. Zhang, H., and Forde, B.G. (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407-409.