跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳星宇
論文名稱:洋桔梗中與胚珠發育及花器形成相關MADSBox基因之分子選殖與特性分析
論文名稱(外文):Molecular Cloning and Characterization of MADS Box Genes Potentially Involving in Ovule and Floral Organ Formation from Eustoma grandiflorum
指導教授:楊長賢楊長賢引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農業生物科技學研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:95
中文關鍵詞:洋桔梗
相關次數:
  • 被引用被引用:5
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
花器發育是由一群基因如APETALA1 (AP1),APETALA2 (AP2),APETALA3 (AP3)及AGAMOUS (AG) 所調控。這其中的AP1,AP3,AG都含有一段保留度很高的DNA結合區域(MADS box domain),顯示MADS box基因在花朵發育中佔了相當重要的角色。為了研究MADS box基因在不同植物裡的功能與將來更進一步的應用,本實驗以選殖重要的經濟花卉洋桔梗的MADS box基因為目標。以花苞的RNA為模版及用RT-PCR及5’-與3’-RACE的方式,三個MADS box基因的cDNA全長被選殖出,分別名為EgMADS1、2與3 (E. grandiflorum MADS box gene 1,2 and 3)。EgMADS1,可轉譯出一個由223氨基酸構成的蛋白,與矮牽牛裡控制胚珠發育Floral Binding Protein gene 7 (FBP7)有80 %的一致性及91 %的相似性。在MADS box的58個氨基酸序列中,EgMADS1與FBP7便有53個氨基酸序列完全相同。在K box,也就是負責兩個蛋白質結合的區域,這兩個基因之間更有88 %的一致性及96 %的相似性。南方墨點法分析中發現,EgMADS1在洋桔梗中是以單一拷貝(single copy)的方式存在。而北方墨點法分析結果指出,EgMADS1專一表現在胚珠,並且可能與FBP7在矮牽牛中的扮演相似的功能。EgMADS2,可轉譯出一個由225氨基酸構成的蛋白,與擬南芥中的AP3,一個控制花瓣與雄蕊形成的基因,有51 %的一致性及67 %的相似性,而在MADS box區域58個氨基酸序列中,44個氨基酸序列完全相同。EgMADS3,可轉譯出一個由258氨基酸構成的蛋白質,與擬南芥裡的AGL6,一個可能與花朵發生(floral initiation)有關的基因有50 %的一致性及62 %的相似性。這兩個基因在MADS box區域58個氨基酸序列中有44個完全相同。北方墨點法分析指出EgMADS2與EgMADS3均在花器中有專一表現。將來更進一步基因功能的分析,可利用在轉基因擬南芥中異位表現這三個基因的方式進行。這些結果不僅能使我們對MADS box基因有更深入的瞭解,而且也可以提供在未來有效運用這些基因的策略。
Floral organs are specified by a set of flower organ identity genes including APETALA1 (AP1), APETALA2 (AP2), APETALA3 (AP3) and AGAMOUS (AG). Since AP1, AP3, and AG all contain the MADS box, a conserved DNA-binding domain, indicating the central role for MADS box genes in flower development. To investigate the function and further application of MADS box genes in different plant species, a PCR-based strategy was used to clone MADS box genes from Eustoma grandiflorum, an economically important flowering plant in the world. Full-length cDNA sequence for three MADS box genes, EgMADS1, 2, and 3 (E. grandiflorum MADS box gene 1, 2 and 3), were isolated using RT-PCR and 5''-, 3''-RACE. EgMADS1, encoding a putative 223 amino acid protein, showed 80% identity and 91% similarity to petunia Floral Binding Protein gene 7 (FBP7) which controlling the ovule development. Among the 58 amino acid in MADS box domain (DNA binding domain), 53 are identical between EgMADS1 and FBP7. K domain, a putative protein dimerization domain, showed 88% identity and 96% similarity between these two genes. Southern analysis indicates that EgMADS1 is present in E. grandiflorum genome in a single copy manner. Northern blot analysis indicated that EgMADS1 was specifically expressed in ovules and may have functional equivalency to FBP7 in petunia. EgMADS2, encoding a 225 amino acid protein, showed 51% identity and 67% similarity to Arabidopsis AP3 which controlling the petal and stamen formation. Among the 58 amino acid in MADS box domain, 44 are identical in EgMADS2 and AP3. EgMADS3, encoding a 258 amino acid protein, showed 50% identity and 62% similarity to Arabidopsis AGL6 which may involve in the floral initiation. 44 out of 58 amino acid in MADS box domain are identical in EgMADS3 and AGL6. Northern blot analysis indicated that EgMADS2 and 3 were specifically expressed in floral organs. Further functional analysis by ectopic expression of these three genes in transgenic Arabidopsis plants is necessary. The result should not only lead to a deeper understanding of the MADS box genes but also provide useful strategy to manipulate these genes in the future.
中文摘要-------------------------------------------------- 1
英文摘要-------------------------------------------------- 3
壹、前言-------------------------------------------------- 5
貳、前人研究---------------------------------------------- 7
參、材料與方法-------------------------------------------- 13
肆、結果-------------------------------------------------- 39
伍、討論、------------------------------------------------ 48
陸、參考文獻---------------------------------------------- 53
柒、圖---------------------------------------------------- 62
捌、表---------------------------------------------------- 81
玖、附圖-------------------------------------------------- 82
1. 陳俊仁(1995)洋桔梗苗期溫度與植物生長調節劑對生育之影響. 中興大學碩士論文
2. 廖麗雅(1993)洋桔梗涼溫育苗及微體繁殖系統之建立. 中興大學碩士論文
3. Angenent, G.C., Busscher, M., Franken, J., Dons, H.J.M., and van Tunen, A.J.(1995a). Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Plant Cell 7, 505-516.
4. Angenent, G.C., Busscher, M., Franken, J., Mol, J.N.M., and van Tunen, A.J.(1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4, 983-993.
5. Angenent, G.C., and Colombo, L.(1996). Molecular control of ovule
development. Trends Plant Sci. 1, 228-232.
6. Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. (1995b). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7, 1569-1582.
7. Angenent, G.C., Franken, J., Busscher, M., Weiss, D., and van Tunen, A.J.(1994). Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33-44.
8. Bowman, J.L., Alvarez, J., Weigel, D., and Meyerowitz, E.M.(1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Dev. 119, 721-743.
9. Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M.(1989). Genes directing flower development in Arabidopsis. Plant Cell 1, 37-52.
10. Brand-Saberi, B., and Christ, B.(1999). Genetic and epigenetic control of muscle development in vertebrates. Cell Tissue Res. 296, 199-212.
11. Coen, E.S., and Meyerowitz, E.M.(1991). The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.
12. Colombo, L., Franken, J., Alexander, R., van der Krol, R., Wittich, P.E., Dons, H.J.M., and Angenent, G.C.(1997a). Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9, 703-715.
13. Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C., and van Tunen, A.J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859-1868.
14. Colombo, L., van Tunen, A.J., Dons, H.J.M., and Angenent, G.C.(1997b). Molecular control of flower development in Petunia hybrida. Adv. Bot. Res. 26, 229-250.
15. Doyle, J.J. (1998). Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci. 3, 473-478.
16. Drews, G.N., Bowman, J.L., and Meyerowitz, E.M. (1991). Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991-1002.
17. Flanagan, C.A., Hu, Y., and Ma, H.(1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10, 343-353.
18. Griesbach R. J., Semeniuk P., Roh M., and Lawson R. H.(1988). Tissue Culture in the Improvement of Eustoma. Hortsci. 23, 790-791.
19. Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F.(1994). Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76, 131-143.
20. Hasebe, M., and Banks, J.A.(1997). Evolution of MADS gene family in plants. In: Iwatsuki K, Raven PH(eds), Evolution and Diversification of Land Plants. 179-197. Springer-Verlag, Tokyo.
21. Huang, H., Tudor, M., Su, T., Zhang, Y., Hu, Y., Ma, H.(1996). DNA binding properties of two Arabidopsis MADS domain protein: binding consensus and dimmer formation. Plant Cell 8, 81-94.
22. Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-697.
23. Jack, T., Fox, G.L., and Meyerowitz, E.M.(1994). Arabidopsis homeotic gene APETALA3 ecotopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76, 703-716.
24. Jofuku, K.D., den Boer, B.G.W., van Montagu, M., and Okamuro, J.K.(1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211-1225.
25. Kramer, E.M., Dorit, R.L., and Irish, V.F.(1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genet. 149, 765-783.
26. Krüger, J., Aichinger, C., Kahmann, R., Bölker, M.(1997). A MADS-box homologue in Ustilago maydis regulates the expression of pheromone-inducible genes but is nonessential. Genet. 147, 1643-1652.
27. Kunitake, H., Nakashima, T., Mori, K., Tanaka, M., and Mii, M . ( 1995). Plant regeneration from mesophyll protoplast of lisianthus (Eustoma grandiflorum) by adding activated charcoal into protoplast culture medium. Plant Cell, Tissue and Organ Culture 43, 59-65.
28. Ledger, S.E., Deroles, S.C., Manson, D.G., Marie Bradley, J., and Given, N.K.(1997). Transformation of lisianthus (Eustoma grandiflorum). Plant Cell Rep. 16, 853-858.
29. Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11, 1007-1018.
30. Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F.(1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273-277.
31. Mcsteen, P.C.M., Vincent, C.A., Doyle, S., Carpenter, R., and Coen, E.S.(1998). Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum. Dev. 125, 2359-2369.
32. Mizukami, Y., Huang, H., Tudor, M., Hu, Y., and Ma. H.(1996). Functional Domains of Floral Regulator AGAMOUS: Characterization of the DNA Binding Domain and Analysis of Domain Negative Mutations. Plant Cell 8, 831-845.
33. Molkentin, J.D, and Olson, E.N.(1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93, 9366-9373.
34. Mushegian, A.R, and Koonin, E.V.(1996). Sequence analysis of eukaryotic developmental proteins: ancient and novel domains. Genet. 144, 817-828.
35. Münster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H., and Theissen, G.(1997). Floral homotic genes were recruited from homologous MADS box genes preexisting in common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94, 2415-2420.
36. O''Brien, I.E.W., and Lindsay, G.C.(1993). Protoplast to plants of Gentianaceae. Regeneration of lisianthus (Eustoma grandiflorum) is affected by calcium ion preconditioning, osmolality and pH of the culture media. Plant Cell, Tissue and Organ Culture 33, 31-37.
37. Okamuro, J.K., den Boer, B.G.W., and Jofuku, K.D.(1993). Regulation of Arabidopsis flower development. Plant Cell 5, 1183-1193.
38. Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., and Yanofsky, M.F.(1995). Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genet. 140, 345-356.
39. Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M.(1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93, 4793-4798.
40. Rounsley, S.D., Ditta, G.S., Yanofsky, M.F.(1995). Diverse roles for MADS box genes in Arobidopsis development. Plant Cell 7, 1259-1269.
41. Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Cote, C., Bosnich, W., Kauffeldt, C., Sunohara, G., Seguin, A., and Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J. 15, 625-634.
42. Sablowski, R.W.M., and Meyerowitz, E.M.(1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93-103.
43. Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., and Yanofsky, M.F.(1993). Identification and Molecular Characterization of ZAG1, the Maize Homolog of the Arabidopsis Floral Homeotic Gene AGAMOUS. Plant Cell 5, 729-737.
44. Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lonnig, W.E., Saedler, H., and Sommer, H.(1992). Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens - Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251-263.
45. Semeria, L., Ruffoni, B., Rabaglio, M., Genga, A., Vaira, A.M., Accotto, G.P., and Allavena A.(1996). Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 47, 67-72.
46. Shore, P., and Sharrocks, A.D.(1995). The MADS-box family of transcription factors. Eur. Biochem. 229, 1-13.
47. Takahashi, M., Nishihara, M., Yamamura, S., Nishizawa, S., Irifune, K., Morikawa, H.(1998). Stable transformation of Eustoma grandiflorum by particle bombardment. Plant Cell Reports 17, 504-507.
48. Tandre, K., Svenson, M., Svensson, M.E., and Engström. P. (1998). Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J. 15, 615-623.
49. Theissen, G., Becker, A., Rosa, A.D., Kanno, A., Kim J.T., Münster, T., Winter, K.U., and Saedler, H.(2000). A short history of MADS-box genes in plant. Plant Mol. Biol. 42, 115-149.
50. Theissen, G., Kim, J., and Saedler, H.(1996). Classification and Phylogeny of the MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484-516.
51. Theissen, G., and Saedler, H.(1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic law’ revisited. Curr Opin. Genet. Dev. 5, 628-639.
52. Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z.(1992). GLOBOSA: A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J. 11, 4693-4704.
53. van der Krol, A.R., Brunelle, A., Tsuchimoto, S., and Chua, N-H.(1993). Functional analysis of petunia floral homeotic MADS box gene Pmads1. Genet. Dev. 7, 1214-1228.
54. Weigel, D., and Meyerowitz, E.M.(1994). The ABCs of floral homeotic genes. Cell 78, 203-209.
55. Winter, K.U., Becker, A., Münster, T., Kim, J.T., Saedler, H., and Theissen G.(1999). MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA 96, 7342-7347.
56. Yang, C-H., Cheng, L-J., and Sung, Z.R (1995). Genetic regulation of shoot development in Arabidopsis: the role of EMF genes. Dev. Biol. 169, 421-435.
57. Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M.(1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35-39.
57. Yabana, N., and Yamamoto, M. (1996). Schizosaccharomyces pombe mapl+ encodes a MADS-box-family protein required for cell-type-specific gene expression. Mol. Cell. Biol. 16, 3420-3428.
58. Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A., and Teeri, T.H.(1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17, 51-62.
59. Zhang, H., and Forde, B.G. (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407-409.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊