跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宏文
研究生(外文):Chang, Hong-Wen
論文名稱:利用粒線體DNA細胞色素b(cytochromeb)基因探討台灣產鯖科魚類之親緣關係
論文名稱(外文):Phylogenetic Relationships of Scombridae in Taiwan Inferred from mtDNA Cytochrome b Gene Sequences
指導教授:黃寶貴簡春潭簡春潭引用關係
指導教授(外文):Huang, Bao-QueyJian, Chun-Tan
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:漁業科學系碩士在職專班
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:68
中文關鍵詞:親緣關係鯖科細胞色素b鄰聚法最大簡約法粒線體DNA
外文關鍵詞:PhylogenyScombridaeMackerelsCytochrome bNeighbor -joiningMaximum parsimonymtDNA
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1215
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
鯖科(Scombridae)魚類包含鮪(Tunas)、鰹(Bonitos)、鰆(Spanish mackerels)以及鯖(Mackerels)等魚類,遍佈全世界,是經濟價值極高的魚類。全世界的鯖科魚類共有15屬50種;而台灣產的鯖科魚類也有11屬22種。傳統的鯖科魚類分類系統主要建立在外形、骨骼等形質基礎上,本研究使用粒線體DNA細胞色素b(Cytochrome b)基因之完整序列,以最大簡約法(Maximum parsimony,MP)、鄰聚法(Neighbor -joining,NJ)等方法探討台灣產鯖科魚類種間之親緣關係(Phylogenetic relationship)。研究的結果顯示:(1)狐鰹屬與鲔屬為姐妹群,應列為鮪族的成員。(2)鮪屬為單系群;花鰹屬、正鰹屬及正鮪屬亦為單系群。正鰹屬及正鮪屬遺傳距離甚短,兩屬似乎可以合併為一個屬。(3)小眼雙線鯖較接近外群,雙線鯖屬應是較原始的鯖科魚類,故應歸入鯖族,不應歸類在鰆族。(4)棘鰆屬與裸鰆屬為姐妹群關係,棘鰆屬應列為沙丁族的成員。(5)沙丁族的分類地位並不穩固,該族成員有重新檢討的必要。
Abstract
The family Scombridae is composed of 15 genera and 50 species of mostly epipelagic marine fishes in the world, including mackerels, Spanish mackerels , bonitos , and tunas. While, there are 11 genera and 22 species of scombrids in Taiwan. They are economically important fishes around the world .
Conventionally, the systematic taxonomy of Scombridae is based on morphology and osteology. In this study, the complete cytochrome b gene sequences (1140 bp) were used to infer the phylogenetic relationships of Scombridae in the coastal waters of Taiwan. All of the 22 and 4 outgroup sequences were subjected to Neighbor-joining, and Maximum parsimony methods. The results of analysis suggest that:(1) Sarda and Thunnus share a common ancestor , so Sarda belongs to Thunnini.(2) Thunnus is a monophyletic group. Axis+Euthynnus +Katsuwonus is monophyletic , too. The genetic distances between Euthynnus and Katsuwonus is very short , so it seems to be reasonable for combining these genera to one genus. (3) Grammatorcynus is close to outgroup , so it is a primitive species of scombrid. It should be categorized to Scombrini . (4) Acanthocybium and Gymnosarda share a common ancestor, and they are the sister groups of Sardini. Acanthocybium belongs to Sardini. (5) The classification of Sardini category is unstable , and the members of Sardini need to be re-evaluated for their position in Scombridae.
目 錄
謝辭 i
中文摘要 ii
英文摘要 iii
目錄 iv
表目錄 vi
圖目錄 vii
前 言 1
材料與方法 9
一、標本採集 9
二、mtDNA細胞色素b基因核苷酸之定序 9
三、資料分析 13
結 果 15
一、 DNA序列分析 15
二、鯖科魚類間的親緣關係 17
討 論 19
一、各族間的親緣關係 19
二、 各族的分類是否適宜 20
三、Cytochrome b 基因的限制 24
結 論 26
參考文獻 27
表 34
圖 61
表目錄
表次 頁次
表1 實驗樣本採集地點、數目及代號 34
表2 22種鯖科魚類與外群cytochrome b基因之完整序列 35
表3 22種鯖科魚類氮鹼基百分比 54
表4 Codon替代變異統計 55
表5 各魚種間轉換(Ts)的比例 56
表6 各魚種間顛換(Tv)的比例 57
表7 各魚種在Kimura 2-Parameter模式下的遺傳距離 58
表8 胺基酸替代變異統計 59
圖目錄
圖次 頁次
圖1 目前接受的鯖科形態形質分類系統關係樹 60
圖2 兩種使用形態形質建構之鯖形魚類親緣假說 61
圖3 引子序列與位置 62
圖4 鹼基變異位置與頻率 63
圖5 Codon變異位置與頻率 64
圖6 胺基酸變異位置與頻率 65
圖7 Kimura 2-parameter 模式下Ts與Tv之迴歸線 66
圖8 使用Neighbor-joining 方法建構之親緣關係樹(以旗魚為外群)。 67
圖9 使用Maximum Parsimony 方法建構之親緣關係樹(以旗魚為外群)。 68
參 考 文 獻
沈世傑、李信徹、邵廣昭、莫顯蕎、陳春暉、陳哲聰 ( 1993 ) 臺灣魚類誌。國立臺灣大學動物學系印行。960頁。
Avise, J. C. (1994). Molecular markers, natural history, and evolution. Chapman and Hall, New York.
Block, B. A., Finnety, J. R., Stewart, A. F. R., Kidd, J. (1993). Evolution of endothermy in fish: Mapping physiological traits on a molecular phylogeny. Science. 260(9):210-213.
Brown, W.M., George, M., Jr. and Wilson, A.C. ( 1979). Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. 76(4):1967-1971.
Cantarore, P., Robertim, M. , Pesole, G., Ludovico, A., Milella, F., Gadaleta , M.N. and Saccone , C. (1994). Evolutionary analysis of cytochrome b sequences in some Perciformes: evidence for a slower rate of evolution than in mammals. J. Mol. Evol. 39:589-597.
Carey, F.G., Teal, J.M., Kanwisher, J.W., Lawson, K.D., and Beckett, K.S. (1971). Warm-bodied fish. Am. Zool. 11:135-143.
Carpenter, K.E., Collette, B.B. and Russo, J.L. (1995). Unstable and stable classifications of scombroid fishes. Bull. Mar. Sci. 56:379-405.
Chow, S. and Inoue, S. (1993). Intra-and interspecific restriction fragment length polymorphism in mitochonfrial genes of Thunnus tuna species. Bull. Nat. Res. Inst. Far Seas Fish., No.30 .
Chow, S., and Kishino, H. (1995). Phylogenetic relationships between tuna species of the genus Thunnus(Scombridae:Teleostei): Inconsistent implications form Morphology,Nuclear and Mitochondrial genomes. J. Mol. Evol. 41:741-748.
Collette, B.B. and Chao, L.N. (1975). Systematics and morphology of the bonitos(sarda) and their relatives(Scombridae,Sardini). Fish. Bull. U.S. 73:516-625.
Collette, B.B. (1979). Adaptations and systematics of the mackerels and tunas. In ”The Physiolgical Ecology of Tunas” .(Sharp,G.D., and Dixon , A. E. , Eds.)Academic Press, New York, pp. 7-39 .
Collette, B.B., and Nauen, C.E. (1983). FAO species catalogue. Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels,bonitos and related species known to date. FAO Fish. Synop. 125, 1-137.
Collette, B.B.,and Potthoff, T., Richards, W.J., Ueyanagi, S., Russo, J. L., and Nishikawa, Y. (1984). Scombroidei: Development and relationships in “Ontogeny and Systematics of Fishes”(Moser,H.G., et al., Eds.). Am. Soc. Ichthyol. Herp. Spec. Publ. , No. 1, pp.591-620.
Collette, B.B. and Russo,J.L. (1985a). Interrelationships of the Spanish mackerels (Pisces:Scombridae: Scomberomorus) and their copepod parasites. Cladistics 1: 141-158.
Collette, B.B. and Russo, J.L. (1985b). Morphology, systematics, and biology of the Spanish mackerels (Scomberomorus, Scombridae). Fish.Bull. US. 82:545-692
Collette, B.B. and Aadland, C.R. (1996). Revision of the frigate tunas ( Scombridae , Auxis), with descriptions of two new subspecies from the eastern Pacific. Fish. Bull. U.S. 94:23-441.
Collette, B.B., Reeb, C. and Block, B.A. ( 2001). Systematics of the tunas and mackerels(Scombridae). In” Tuna: Physiolgy, Ecology, and Evolution”(Block, B.A. , and Stevens , E. D. , Eds. ). Academic Press, New York, pp. 1-33
Cummings, M.P., Otto, S.P. and Wakeley, J. (1995). Sampling properties of DNA Sequence data in phylogenetic analysis. Mol. Biol. Evol. 12(5): 814-822.
Elliott, N.G.,Ward, R.D. ( 1995). Genetic relationships of eight species of pacific tunas(Teleostei:Scombridae)inferred form allozyme analysis. Mar. Freshwater Res. 46:1021-1032.
Edwards, A.W., Nei, E.M., Takezaki,N. and Sitnikova, T. (1995). Assessing molecular phylogenies. Science 267:253.
Finnerty, J.R., Block, B.A. (1995). Evolution of cytochrome b in the Scombroidei (Teleostei): molecular insights into billfish ( Istiophoridae and Xiphiidae) relationships. Fish. Bull. 93(1):78-96.
Gibbs, R.H.,Jr. and Collette, B.B. (1967). Comparative anatomy and systematics of the tunas, genus Thunnus. U.S. Fsih. Wildl. Serv. Fish. Bull. 66:65-130.
Godsil, H.C. (1944). A systematic study of the Pacific tunas. Calif. Div. Fish Game Fish. Bull. 60:1-131
Godsil, H.C. (1954). A descriptive study of certain tuna-like fishes. Calif. Div. fish Game Fish. Bull. 97:1-188.
Gram, J.B. (1973). Heat exchange in the black skipjack and the blood-gas relationship of warm-bodied fishes. Proc. Natl. Acad. Sci. 70:196-1967.
Gram, J.B. (1975). Heat exchange in the yellowfin tuna,Thunnus albacares, and skipjack tuna, Katsuwonus pelamis, and the adaptive significance of elevated body temperatures in scombrid fishes. Fish. Bull. U.S. 73:219-229.
Hillis, D.M., Huelsenbeck , J.P. and Swofford , D.L. (1994). Hobgoblin of phylogenetics? Nature 369:363-364.
Hillis, D.M., Huelsenbeck, J.I. and Cunningham, C. W. (1994). Application and accuracy of molecular phylogenies. Science 264: 671 - 677.
Hillis, D.M. and Dixon , M.T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66(4):411-453.
Johnson, G.D. (1986). Scombroid phylogeny:An alternative hypothesis. Bull. Mar. Sci. 39:1-41
Kishinouye, K. (1923). Contributions to the comparative study of the so-called scombroid fishes. J. Coll. Agr. Imp. Univ. Tokyo 8:293-475.
Kocher, T.D., Thomas , W.K., Meyer , A., Edwards, S.V., Paabo, S., Villablanca , F.X. and Wilson ,A.C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. 86:6196-6200.
Lockhart, P.J., Penny D., and Meyer, A. (1995). Testing the phylogeny of swordtail fishes using split decomposition and spectral analysis. J. Mol. Evol. 41( 5):666-674.
Lydeard, C., Wooten, M. C. and Meyer, A. (1995). Cytochrome b sequence variation and a molecular phylogeny of the live-bearing fish genus Gambusia (Cyprinodontiformes : Poeciliidae) Canad. J. Zool. 73(2): 213-227.
Lydeard, C. and Roe, K.J. (1997). The phylogenetic utility of the mitochondrial cytochrome b gene for inferring relationships among actinopterygian fishes. In: Kocher, T. and Stepian, C. (Eds.) ; Molecular Systematics of Fishes; Academic Press, Burlington, MA.
Mago Leccia, F. (1958) . The comparative osteology of the scombroid fishes of the genus Scomberomorus from Florida. Bull. Mar. Sci. Gulf. Caribb. 8:299-341.
Martin, A.P., Naylor ,G.J.P., and Palumbi ,S.R. (1992). Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357(6374):153-155.
Martin, A.P., Palumbi ,S.R. (1993). Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Mol. Biol. Evol. 10(4) :873-891.
Matsui, T.(1967). Review of the mackerel genera Scomber and Rastrelliger with description of a new species of Rastrelliger. Copeia 71-83.
Meyer, A. (1993). Evolution of mitochondrial DNA in fishes. pp. 1-38 in I. W. Hochachka and T.P.Mommsen,eds. Molecular biology frontiers , biochemistry and molecular biology of fishes. Vol. 2. Wlsevier science Publishers . Amsterdam.
Meyer, A. (1994a). DNA technology and phylogeny of fish: molecular phylogenetic studies of fish. Genetics and evolution of aquatic organisms. Chapman and Hall, London. A.R. Beaumont , ed. pp.219-249
Meyer., A. (1994b). Shortcomings of the cytochrome b gene as a molecular marker. Trends Ecol. Evol. 9:278-280.
Moore, W. S. (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718-726.
Nelson, J.S. ( 1994). Fishes of the World, 3rd ed. John Wiley & Sons, Inc. , New York.
Nosek, J.,Tomaska, L., Fukuhara, H., Suyama,Y. and Kovac, L. (1998). Linear mitochondrial genomes: 30 years down the line. Trends Gens .14:184-188.
Posada, D. and Crandall, K.A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14(9): 817-818
Reed, D.L., deGravelle, M.J. and Carpenter, K.E. (2001). Molecular Systematics of Selene(Perciformes:Carangidae)Based on Cytochrome b Sequences. Mol. Phylogenet. Evol. 21(3):468-475.
Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5263-5467.
Schmidt, T. R., Bielawski, J. P. and Gold, J. R. (1998). Molecular phylogenetics and evolution of the cytochrome b gene in the cyprinid genus Lythrurus (Actinopterygii: Cypriniformes). Copiea 1:14-22.
Song, C. B., Near, T. J. and Page ,L. M. (1998). Phylogenetic Relations among percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Mol. Phylogenet. Evol. 10(3):343-353.
Swofford, D.L. (2001) ”PAUP*” Phylogenetic Analysis Using Parsimoony (*and other Methods) Version 4.0 , Sinauer, Sunderland, MA.
Wiley, E.O., Johnson, G. D. and Dimmick, W.W. (1998). The phylogenetic relationships of Lampridiform fishes (Teleosteoi: Acanthomorpha), based on a total-evidence analysis of morphological and molecular data. Mol. Phylogenet. Evol. 10(3):417-425.
Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski ,K., Higuchi, R. C., Plaumbi, S. R., Prager, E. M., Sage, R. D. and Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26: 375-400.
Zardoya, R. and Meyer, A. (1996). Phylogenetic performance of mitochondrial protein coding genes in resolving relationships among vertebrates. Mol. Biol. Evol. 13(7):933-942.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊