跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周艷貞
研究生(外文):Yen-Chen Chou
論文名稱:資訊隱藏樣式通用包裝於MapReduce模型架構之研究
論文名稱(外文):General Wrapping of Information Hiding Patterns on MapReduce Framework
指導教授:林志敏林志敏引用關係劉豐豪
口試委員:林志敏劉豐豪蔡明峰
口試日期:2014-07-04
學位類別:碩士
校院名稱:逢甲大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:45
中文關鍵詞:雲端運算資訊隱藏MapReduceLeast Significant Bit (LSB)演算法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
隨著智慧型行動裝置的普及使用、網路技術的進步與雲端運算環境的發展,傳統資訊隱藏技術的應用需求,例如,數位浮水印、數位證據與數位鑑識等等,將面臨新的挑戰。根據國際數據資訊(International Data Corporation, IDC) 研究顯示,未來的數位資料量將會以每兩年成長一倍的速度迅速增加,在數位資料量與日俱增的情況下,傳統的電腦已逐漸沒辦法負荷。因此,結合雲端運算分散式計算特性,發展具備處理龐大數量數位資料能力的雲端運算資訊隱藏技術將是一
個值得探討的議題。
本論文首先探討資訊隱藏演算法應用雲端運算 MapReduce 模型時,其通用包裝的調整方式,並以理論基礎較為成熟的 Least Significant Bit 」LSB)為例,實作出雲端運算資訊隱藏技術的核心功能。本論文所實作之雲端運算資訊隱藏技術,除與傳統方法作效能比較之外,並針對不同的載體影像大小、載體影像數量
及叢集節點規模等情況,實際測量及分析其對雲端運算資訊隱藏技術執行時間的影響。
誌謝.................................................................................................................................i
摘要................................................................................................................................ii
Abstract ........................................................................................................................ iii
第一章 緒論..................................................................................................................1
1.1 研究動機及背景............................................................................................1
1.2 研究目的........................................................................................................4
1.3 論文架構........................................................................................................5
第二章 背景知識與相關研究......................................................................................6
2.1 雲端運算與資訊隱藏相關研究....................................................................6
2.1.1 資訊隱藏技術跟雲端運算關係........................................................6
2.1.2 LSB 最小位元藏密法......................................................................7
2.2 雲端運算環境................................................................................................8
2.2.1 Hadoop...............................................................................................9
2.2.2 Hadoop Distributed File System(HDFS) .........................................12
2.3 MapReduce ..................................................................................................14
2.3.1 MapReduce 模型.............................................................................14
2.3.2 MapReduce Design Patterns ............................................................15
第三章 資訊隱藏演算法應用MapReduce 模型......................................................17
3.1 資訊隱藏演算法MapReduce 通用包裝模型............................................18
3.2 M/R-Based LSB 系統實作設計.................................................................23
3.2.1 M/R-Based LSB Patterns 選擇.......................................................23
3.2.2 M/R-Based LSB 虛擬碼.................................................................25
第四章 執行效能
[1] IDC Home : The premier global market intelligence firm. URL :
http://www.idc.com/
[2] John Gantz and David Reinsel, “THE DIGITAL UNIVERSE IN 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East,” December 2012.
[Online]. Available: http://idcdocserv.com/1414.
[3] Fabien A. P. Petitcolas, Ross J. Anderson and Markus G. Kuhn, “Information
Hiding-A Survey,” Proceedings of the IEEE, Vol. 87, No. 7, pp. 1062-1078, 1999.
[4] Zhiwei Yu; Thomborson, C.; Chaokun Wang; Jianmin Wang; Rui Li, &;quot;A
cloud-based watermarking method for health data security,&;quot; High Performance
Computing and Simulation (HPCS), 2012 International Conference on,
pp.642,647, 2-6 July 2012.
[5] Murakami, K.; Hanyu, R.; Qiangfu Zhao; Kaneda, Y., &;quot;Improvement of security in
cloud systems based on steganography,&;quot; Awareness Science and Technology and
Ubi-Media Computing (iCAST-UMEDIA), 2013 International Joint Conference
on, pp.503,508, 2-4 Nov. 2013.
[6] Shih, F. Y. and Wu, Scott. Y. T., “Combinational Image Water Marking in The
Spatial and Frequency Domains,” Pattern Recognition, Vol. 36, No. 4, pp.
969-975, 2003.
[7] Chang, C. C., Chen, T. S., and Chung, L. Z., “A Steganographic Method Based
upon JPEG and Quantization Table Modification,” Information Sciences, Vol.
141, No. 1-2, pp. 123-138, 2002.
[8] Joo, S., Suh, Y., Shin, J., and Kikuchi, H., “A New Robust Watermark Embedding
into Wavelet DC Components,” ETRI Journal, Vol. 24, No. 5, pp. 401-404, 2002.
[9] Lee, W. B. and Chen, T. H., “A Public Verifiable Copy Protection Technique for
Still Images,” Journal of Systems and Software, Vol. 62, No. 3, pp. 195-204,
2002.
[10] Alturki, F. and Mersereau, R., “Secure Blind Image Steganographic Technique
Using Discrete Fourier Transformation,” Proceedings of IEEE International
Conference on Image Processing, Thessaloniki, Greece, pp. 542-545, 2001.
[11] Bender, W., Gruhl, D., Morimoto, N., and Lu, A., “Techniques for Data
Hiding,”IBM Systems Journal, Vol. 35, No. 3-4, pp. 313-336, 1996.
[12] Fridrich, J., Goljan, M., and Rui, D., “Detecting LSB Steganography in Color,
and Gray-scale Images,” Magazine of IEEE Multimedia Special Issue on
Security, Vol. 4, No. 4, pp. 22-28, 2001.
[13] Westfeld, A. and Pfitzmann, A., “Attacks on Steganographic Systems,”
Proceedings of the Third International Workshop on Information Hiding,
Dresden, Germany, pp. 61-75, 1999.
[14] Feng, J. B., Lin, I. C., Tsai, C. S., and Chu, Y. P., “Reversible Watermarking:
Current Status and Key Issues,” International Journal of Network Security, Vol. 2,
No. 3, pp. 161-171, 2006.
[15] S. Katzenbeisser and F. A. Petitcolas, Eds., Information Hiding Techniques for
Steganography and Digital Watermarking, 1st ed. Norwood, MA, USA: Artech
House, Inc., 2000.
[16] How does SilentEye embed data in BMP format?,
http://www.silenteye.org/embedding.html?i1s2
[17] National Institute of Standards and Technology. URL :
http://www.nist.gov/
[18] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp.107–113, Jan. 2008.
[19] J. R. Douceur and W. J. Bolosky, “A Large-scale Study of File-system Contents,”
in Proceedings of the 1999 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, New York, NY, USA, 1999, pp.
59–70.
[20] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in
Proceedings of the nineteenth ACM symposium on Operating systems principles,
New York, NY, USA, 2003, pp. 29–43.
[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed Storage System for
Structured Data,” ACM Trans. Comput. Syst., vol. 26, no. 2, pp. 4:1–4:26, Jun.
2008.
[22] Hadoop Distributed File System (HDFS). URL :
http://hadoop.apache.org/hdfs/.
[23] Donald Miner and Adam Shook, MapReduce Design Patterns, AO&;#39;Reilly Media,
2012
[24] 劉豐豪
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top