中國預防醫學院營養與食品衛生研究所編著。1991。食品成分表(第一版)。人民衛生出版社。中國。
台灣魚類資料庫。http://fishdb.sinica.edu.tw/2001new/importpic.asp?id=ZA79。
行政院衛生署。2009。衛生統計資訊網。97年死因統計結果分析。
余思賢。2005。雞精殘餘物之酵素水解液對降血壓及抗氧化能力之研究。輔仁大學食品營養學系碩士論文。台北。李仁鳳。2004。甲魚成分分析及甲魚由對倉鼠脂質代謝之影響。輔仁大學食品營養系碩士論文。台北。林天南、蔡作雍。1996。動物中風模式;高血壓易中風老鼠。國家實驗動物繁殖及研究中心簡訊。3:7-13。邱士峰。2003。甲魚萃取物之生體外免疫調節功能評估。國立台灣海洋大學水產食品科學系碩士論文。基隆。金安兒、郁凱衡。1993。冷凍乾燥胡蘿蔔之最適操作條件。食品科學 20:21-32。邱麗華。2004。甲魚酵素水解物胜肽對抑制血管收縮素轉化酶及降血壓功能之研究。輔仁大學食品營養學系碩士論文。台北。洪哲穎、陳國誠。1992。回應曲面實驗設計法在微生物酵素生產之應用。化工期刊 39:3-18。
島崎弘幸。1990。身體內過酸化脂質的測定。今田尚志、值田伸夫編著過酸化脂質實驗法。醫藥齒科出版社。東京。
國家實驗動物中心。1997。實驗動物品系特徵。生命科學簡訊。11:6-6。
陳思怡、江伯源、林子清、柯文慶。2004。利用反應曲面法探討罐裝紅豆湯之最適製作條件。臺灣農業化學與食品科學 42:154-167。彭錦樵、潘憶萱。1998。胡蘿蔔渣應用於高纖擠壓產品適當操作條件之研究。農業機械學刊 25:547-558。
楊公明、徐懷德、段旭昌、李志成。2003。甲魚營養成分分析研究。營養學報 25:443-445。
楊景雍。2007。小米酒渾濁發生機制與澄清方法探討。高雄海洋科大學報 21:151-168。
劉銘純、彭錦樵。2002。反應曲面法應用於滾筒式焙茶機最適操作條件之研究。農業機械學刊 11:45-56。蔡佳原、陳健祺、蔡孟貞。2001。甲魚各部分萃取物對癌細胞與免疫細胞的影響。台灣保健食品學會第二屆第一次會員大會壁報論文。
魏玉嬌。2008。以紅麴菌生產葡萄糖胺之培養基組成最佳化研究。元智大學化學工程與材料科學學系碩士論文。桃園。Beto, J.A. Quality of life in treatment of hypertension A meta-analysis of clinical trial. Am. J. Hypertens. 1992, 5, 125-133.
Bhaskar, N.; Benila, T.; Radha, C.; Lalitha, R. G. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology. 2008, 99, 335-343.
Binevski, P.V.; Sizova, E.A.; Pozdnev, V.F.; Kost, O.A. Evidence for the negative cooperativity of the two active sites within bovine somatic angiotensin-converting enzyme. FEBS Lett. 2003, 550, 84-88.
Box, G. E. P.; Wilson, K. B. On the experimental attainment of optimum conditions. J. Roy. Statist. Soc.Ser. 1951, B 13, 1-45.
Chen, Y.H.; Liu, Y.H.; Yang, Y.H.; Feng, H.H.; Chang, C.T.; Chen, C.C. Antihypertensive effect of an enzymatic hydrolysate of chicken essence residues. Food Sci. Technol. Res. 2002, 8, 144-147.
Cheng, F.Y.; Wan, T.C.; Liu, Y.T. Chen, C.M.;Lin, L.C. Sakata, R. Determination of angiotensin-I converting enzyme inhibitory peptides in chicken leg bone protein hydrolysate with alcalase. Anim. Sci. J. 2009, 80, 91–97
Cheung, H. S.; Wang, F. L.; Ondetti, M. A.; Sabo, E. F.; Cushman, D. W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem.1980, 255, 401-407.
Chiba, H.; Yoshikawa, M. Biologically functional peptides from food proteins: New opioid peptides from milk proteins. In Protein tailoring for food and medical users, eds. R. E. Feeney and J. R. Whitaker, New York: Marcel Dekker. 1986; pp123–153.
Church, F. C.; Swaisgood, H. E.; Porter, D. H.; Catignani, G. L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci.1983. 66, 1219-1227.
Cinq-Mars, C. D.; Li-Chan, E. C.Y. Optimizing angiotensin I-converting enzyme inhibitory activity of pacic hake (Merluccius productus) fillet hydrolysate using response surface methodology and ultraltration. J. Agric. Food Chem. 2007, 55, 9380-9388.
Cross, K.J.; Huq, N.L.; Palamara, J.E.; Perich, J.W.; Reynolds, E. C. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J. Biol. Chem. 2005, 280, 15362-15369.
Cushman, D. W.; Cheung, H. S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971, 20, 1637-1648.
Diniz, F. M.; Martin, A. M. Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate. Lebensm. Wiss. -Technol. 1997, 30, 266–272.
Erdos, E. G. Angiotensin I converting enzyme. Circ. Res. 1975, 36, 247-254.
Erdos, E. G.; Skidgel, R. A. The angiotensin I– converting enzyme. Lab. Invest. 1987, 56, 345–348.
Feng, H.; Matsuki, N.; Saito, H. Anti-tumor effects of orallyadministered soft-shelled turtle powder in mice. Biol. Pharm. Bull. 1996, 19, 367-368.
Feng, H.; Matsuki, N.; Saito, H. Attenuation of the increase in blood pressure and vascular reactivity by chronic oral administration of soft-shelled turtle powder in spontaneously hypertensive rats. Phytother. Res. 1991, 4, 57-61.
Feng, H.; Matsuki, N.; Saito, H. Improvement of fatigue and acceleration of recovery from stress-induced deficient sexual behavior in mice following oral administration of soft-shelled turtle powder. Biol. Pharm. Bull. 1996, 19, 1447-1450.
Fujita, H.; Yokoyama, K.; Yoshikawa, M. Classication and antihypertensive activity of angiotensin I– converting enzyme inhibitory peptides derived from food proteins. J. Food Sci.2000, 65, 564-569.
Fujita, H.; Yoshikawa, K. LKPNM: a prodrug-type ACE inhibitory peptide derived from fish protein. Immunopharmacology.1999, 44, 123–127.
Gibbon, G.H. The pathophysiology of hypertension: The importance of angiotenisn II in cardiovascular remodelling. Am. J. Hypertens.1998, 11,177S-181S.
Guerard, F.; Sumaya-Martinez, M.T.; Laroque, D.; Chabeaud, A.; Dufosse, L. Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochmistry. 2007, 42, 1486-1491.
Guyton, A. C. Textbook of medical physiology. In: The liver as an organ. 1991; pp 771-774.
Hartmann, R.; Meisel, H. Food-derived peptides with biological activity: from research to food applications. Food Biotechnol. 2007, 18,163–169.
Haznedaroglu, I.C.; Öztürk, M.A. Towards the understanding of the local hematopoietic bone marrow renin-angiotensin system. Int. J. Biochem. Cell. Biol. 2003, 1418, 1–14.
He, G.Q.; Xuan, G. D.; Ruan, H.; Chen, Q. H.; Xu, Y. Optimization of angiotensin I-converting enzyme (ACE) inhibition by ric dregs hydrolysates using response surface methodology. J. Zhejiang Univ. SCE. 2006, 6, 508-513.
Himmelblau D. M. Process analysis by statistical methods. John Wiley and sons, Inc., New York, 1970; pp.230-292.
Hooper, N. M.; Turner, A. J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem. J. 2003, 241, 625-633.
Inagami, T. The renin-angiotensin system. Essays Biochem. 1992, 28, 147-164.
Johnston, J. I.; Franz, V. L. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control. J. Hypertens. 1992, 10s, 13–26.
Kasuya, Y.; Utsunomiya, N.; Matsuki, N. Attentuation of the development of hypertension in spontaneously hypertensive rats by chronic oral administration of eicosapentaenoic acid. J. Pharmacobio-dyn. 1986, 9, 239-243.
Kim, J. M.; Whang, J. H.; Suh, H. J. Enhancement of angiotensin I converting enzyme activity and improvement of emulsifying and foaming properties of corn gluten hydrolysate using ultraltration membranes. Eur. Food Res. Technol. 2004, 218, 133–138.
Kim, S. K.; Byun, H. G.; Park, P. J.; Shahidi, F. Angiotensin I converting enzyme inhibitory peptides puried from bovine skin gelatin hydrolysate. J. Agric. Food Chem. 2001, 49, 2992–2997.
Kitts, D. D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003.9,1309-1323.
Kristinsson, H. G.; Rasco, B. A. Fish protein hydrolysates: production, biochemical, and functional properties. Crit. ReV. Food Sci. Nutr. 2000, 40, 43–81.
Leung, P. S. Pancreatic renin-angiotensin system: a novel target for the potential treatment of pancreatic diseases? JOP.2003, 4, 89–91
Li, G. H.; Le, G. W.; Shi, Y. H.; Shrestha, Sundar. Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 2004, 24, 469-486.
Luft, F. C. Molecular genetics of salt-sensitivity and hypertension. Drug. Metab. Dispos. 2001, 29, 500-504.
Maeno, M.; Yamamoto, Y.; Takano, T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 1996, 79, 1316-1321.
Masuda, O.; Nakamura, Y.; Takano, T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J. Nutr. 1996, 126, 3063-3068.
Matui, T.; Yukiyoshi, A.; Doi, S.; Sugimoto, H.; Yamada, H.; Matsumoto, K. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. J. Nutr. Biochem. 2002, 13, 80-86.
Meisel, H.; Walsh, D. J.; Murray, B.; FitzGerald, R. J. ACE inhibitory peptides. In Nutraceutical Proteins and Peptides in Health and Disease; Yoshinori, M., Shahidi, F., Eds.; CRC Taylor and Francis: Boca Raton, FL, 2006; pp 269–315.
Murray, B. A.; FitzGerald, R. J. Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr. Pharm. Des. 2007, 13, 773-791
Myers, R. H.; Montgomery, D. C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; Wiley: New York, 2002; pp 1–84, 235–302.
Nakamura, Y.; Masuda, O.; Takano, T. Decrease of tissue angiotensin-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci. Biotech. Biochem. 1996, 60, 488-489.
Nakano, D.; Ogura, K.; Miyakoshi, M.; Ishii, F.; Kawanishi, K.; Kurumazuka, D.; Kwak, C. H.; Ikemura, K.; Takaoka, M.; Moriguchi, S.; Iino, T.; Kusumoto, A.; Asami, S.; Shibata, H.; Kiso, Y.; Matsumura, Y. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensice rats. Biosci. Biotech. Biochem. 2006, 70, 1118-1126
Natesh, R.; Schwager, S. L. U.; Sturrock, E.D.; Acharya, K. R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 2003, 421, 551-554.
Nielsen, P. M.; Petersen, D.; Dambmann, C. Improved method for determining Food protein degree of hydrolysis. J. Food Sci. 2001. 66, 642-646.
Nilsang, S.; Lertsiri, S.; Suphantharika, M.; Assavanig, A. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering. 2005, 70, 571-578.
Okamoto, K.; Yamori, Y.; Nosaka, S.; Ooshima, A.; Hazama, F. Studies on hypertension in spontaneously hypertensive rats. Clin. Sci. Molec. Med.1973. 45, 11s-14s.
Okunishi, H.; Kawamoto, T.; Kobayashi, T.; Sakonjo, H.; Miyazaki, M. Prolonged and tissue selective inhibition of vascular angiotensin-converting enzyme vy trandolapril: relevance to its antihypertensive action in spontaneously hypertensive rats. Pharm. Pharmacol. Lett. 1992. 2,180-183.
Oshima, G.; Shimabukuro, H.; Nagasawa, K. Peptideinhibitors of angiotensin-converting enzyme in digestsof gelatin by bacterial collagenase. Biochim. Biophys.Acta.1979, 566, 128-137.
Philips, M. I. Functions of angiotensin in the central nervous system. Annu. Rev. Physiol.1987, 49, 413–435.
Pihlanto-Leppälä, A. Bioactive peptides derived from bovine whey proteins: Opioid and ACE inhibitory peptides. Trends Food Sci. Technol.2001, 11,347–356.
Poisner, A. M. The human placental renin-angiotensin system. Frontiers. Neuroendocrinol. 1998, 19, 232–252.
Qian, Z. J.; Je, J. Y.; Kim, S. K. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus. J. Agric. Food Chem. 2007, 55, 8398-8403.
Rubinstein, I.; Houmsse, M.; Davis, R.G.; Vishwanatha, J. K. Tissue angiotensin I-converting enzyme activity in spontaneously hypertensive hamsters. Biochem Biophys. Res. Commun. 1992, 183, 1117-1123.
Saiga, A.; Tanabe, S.; Nishimura, T. Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment. J. Agric. Food Chem. 2003, 51,3661−3667
Skidgel, R. A.; Defendini, R.; Erdos, E. G. Angiotensin I converting enzyme and its role in neuropeptide metabolism. Ellis Horwood, Chichester. 1988; pp165-188.
Takase, H.; Moreau, P.; Kung, C. F.; Nava, E.; Luscher, T. F. Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency. Hypertension. 1996, 27, 25-31.
Uchiyama, M.,; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86: 271.
van der Ven, C.; Gruppen, H.; de Bont, D. B. A.; Voragen, A. G. J.Optimization of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology.Int. Dairy J. 2002, 12, 813–820.
Velletri, P.A.; Billingsley, M.L.; Lovenberg, W. Thermal denaturation of rat pulmonary and esticular angiotensin-converting enzyme isozymes. Effects of chelators and CoCl2. Biochim. Biophys. Acta. 1985, 839, 71-82.
Wang, Y. K.; He, H. L., Chen, X. L.; Sun, C. Y.; Zhang, Y.Z.; Zhou, B. C. Production of novel angiotensin I-converting enzyme inhibitory peptides by fermentation of marine shrimp Acetes chinensis with Lactobacillus fermentum SM 605. Appl. Micorbiol. Biotechnol. 2008, 79, 785-791.
Wu, J.; Ding, X. Characterization of inhibition and stability of soy-protein-derived angiotension I-converting enzyme inhibitory peptides. Food. Res. Interational.2002, 35, 367-375.
Xia, S. H.; Wang, Z.; Xu, S. Y. Characteristics of Bellamya purificata snail foot protein and enzymatic hydrolysates. Food Chemistry. 2007, 101, 1188-1196.
Xu, H.; Yin, J.; Feng. L.; Zhang, Y. Studies on angiotensin converting enzyme inhibiting in vitro and antioxidation activity of soft-shelled turtle enzymatic hydrolysate. Journal of Chinese Institute of Food Science and Technology. 2008, 2, 58-64.
Yang, H.Y.; Yang, S.C.; Chen, J.R.; Tzeng, Y.H.; Han, B.C. Soybean protein hydrolysate prevents the development of hypertensionin spontaneously hypertensive rats. Br. J. Nutr.2004, 92, 507-512.
Yokoyama, K.; Chiba, H.; Yoshikawa, M. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Biosci. Biotech. Biochem. 1992, 56, 1541-1545
Yoshii, H.; Tachi, N.; Ohba, R.; Sakamura, O.; Takeyama, H.; Itani, T. Antihypertensive effect of ACE inhibitory ologopeptides from chicken egg yolks. Comp. Biochem. Physiol. 2001, 128C, 27–33.