跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林祖泰
研究生(外文):Tsu-Tai Lin
論文名稱:自放線菌中篩選抗真菌劑及醣蛋白質細胞內輸送抑制劑之研究
論文名稱(外文):Screening for The Antifungal Antibiotic and Glycoprotein Intracellular Transport Inhibitor from Actinomycetes
指導教授:蔡英傑蔡英傑引用關係
指導教授(外文):Ying-Chieh Tsai
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:180
中文關鍵詞:放線菌抗真菌劑篩選醣蛋白質抑制劑細胞內輸送
外文關鍵詞:ActinomycetesAntifungal AntibioticScreeningGlycoproteinInhibitorIntracellular TransportTranslocation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為篩選新型之抗真菌劑以及糖蛋白輸送抑制劑,論文分成三部分:1、放線菌菌種之篩選,2、新型抗真菌劑之篩選以及3、醣蛋白質細胞內輸送抑制物質篩選。
本研究自全國各地採集85 個土壤樣本,及自台北市動物園收集188 個動物糞便樣本利用乾熱法、濕熱法、鹼處理法、SDS-yeast extract 處理法及phenol 處理法等五種前處理,以及M3 、AY 、GA 、HV 及AI等五種選擇性分離培養基,自土壤及糞便樣本中分離得1847株放線菌菌株,用於抗真菌劑及糖蛋白輸送抑制劑之篩選。
抗真菌劑篩選方面,首先利用Candida albican為主要檢定菌,由所分離之1847株放線菌中分離得104株具生產抗真菌劑之菌株,再利用Pythium splendens、Rhizoctonia solani、Phytophthora capsici等三種國內重要之植物病原真菌做為檢定菌,自該104株菌株中、挑選48株進行抗真菌活性檢測。最後選擇編號84A22之菌株進行活性物質研究。該菌株經鑑定為Streptomyces alboviridis。經發酵培養後,自其培養液以管柱層析法及HPLC純化出其活性物質,命名為alboviridimycin。利用mass、NMR及FT-IR等分析對alboviridimycin進行結構鑑定,知其分子量為1100,其結構尚未解明,但已知為一種depsipeptide,其胺基酸組成為alanine、valine、serine及其他胺基酸衍生物。Alboviridimycin對格蘭氏陰性菌如Escherichia coli、Pseudomonas aeruginosa及Xanthomonas campestris等具抑菌活性,其MIC為0.04g/ml,對Candida albicans 、Cryptococcus neoformans及Saccharomyces cerevisiae之MIC約為0.16-2.5 g/ml,對絲狀真菌亦具有抑制活性、不過對Penicillium citrinum、Trichophyton mentagrophytes、Microsporum canis及Rhizoctonia solani則無活性。已知之depsipeptide中僅Aureobasidium pullulans所生產之aureobasidin A具抗真菌活性。Alboviridimycin和aureobasidin A之結構明顯不同,故而為一種新型之抗真菌depsipeptide。
醣蛋白質細胞內輸送抑制物質篩選方面,篩選系統為由Takatsuki所開發,利用NDV病毒感染BHK21細胞後,該病毒會合成HN及F糖蛋白送至宿主細胞膜。F糖蛋白具有引發宿主細胞融合之活性,而HN蛋白則會引發紅血球凝集現象,當添加微生物培養萃取液後,若含有抑制糖蛋白細胞內輸送阻害之物質,則HN與F糖蛋白無法送至細胞膜,因而上述二項活性受到影響。利用此種篩選方法預期可篩選到HN及F糖蛋白輸送可能相關的各個steps之阻害物質。利用此篩選方法、由糞生放線菌中篩選得七株具有生產抑制物質活性菌株。挑選其中一株具有最大抑制活性菌株48P1I2, 進行活性物質之純化。根據此菌株之菌絲及孢子的顯微特徵與生化特性,此菌株屬於Streptomyces gougerotii。利用各種分離法純化抑制物質。此純化之活性物質暫時命名為GPT48。GPT48之分子量為548,其結構尚未解明。利用免疫螢光染色法解析及西方墨點試驗解析,在抑制劑作用下病毒糖蛋白蓄積部位,以了解抑制物質之作用位置。目前已知GPT48之作用位置位於cis-Golgi至middle-Golgi 間,作用之部位與已知之醣蛋白輸送抑制劑有所不同。
The aims of this study are to screen the novel antifungal antibiotic and glycoprotein intracellular transport inhibitor. It divied into three parts: 1, the screening for the strains of Actinomycetes, 2, the screening for novel antifungal antibiotics, and 3, screening for the glycoprotein intracellular transport inhibitor.
In this study, we collected 85 soil samples from Taiwan island and 188 feces samples from Taipei City Zoo. After using 5 soil pretreatment including dry heat treatment, moisture heat treatment, SDS-yeast treatment and phenol treatment and 5 isolation mediums including M3, AY, GA, HV and AI, we isolated 1847 strains of actinmycetes from those soil and feces samples. Those actinomycetes were fed into our screening systems for searching antifungal antibiotics and the glycoprotein transport inhibitors.
We use antifungal susceptibility test of Candida albican as the frist screening system for antifungal antibiotics. These 1847 actinomycetes were screened and selected 104 strains for antifungal activity against Candida albican. Then, the plant pathogenic fungi, Pythium splendens、Rhizoctonia solani and Phytophthora capsici, were used ass the test organisms for antifungal activity screening. By antifungal susceptibility test, these 104 actinomycetes were screened for antifungal activity against plant pathogenic fungi. A strain, 84A22, identified as Streptomyces alboviridis, against Pythium splendens and Phytophthora capsici was selected to purify its antifungal compound. The pure compound was obtained from fermentation broth by extraction with ethyl acetate, silica gel column chromatographies, and HPLC. The molecular weight of this compound is 1100 by mass spectrometry. Its structure is determined by NMR spectrometry and named as alboviridimycin..
Using the screening system mentioned below we try to identify the unique and specific inhibitors for glycoprotein transport from Actinomycetes. This screening system was constructed by using baby hamster kidney cell (BHK-21 cell) and New Castle Disease Virus (NDV) for screening the glycoprotein''s inhibition and presentation produced by virus. Syntium form-ation and hemaglutination are the two phenomena caused by the glycoproteins produced by NDV after infection. The F protein and HN protein produced by virus are the causes of syntium formation and why hemaglutination take place. We use microscope to observe the syntium formation to determine the F protein''s transportation and use the hemaglutination test to assay the presentation of HN protein in the cytosal. We select the substance that can inhibit the syntium formation caused by the transportation of F proteins block but cannot stop the HN protein synthesis. We used this screening system to select inhibitors from Actinomycetes and selected several candidates for further identification and characterization. And now, we choose the strain 48P1I2 which was identified as Streptomyces gougerotii as the production strain. After purification process, we get the purified compound and try to estimate its structure. At the same time, we also study the molecular mechanism of the inhibition of the glycoprotein intracellular transport inhibitor
ABSTRACT 8
縮寫 9
第一章、緒論 9
第一節、放線菌(Actinomyces) 10
一、放線菌(Actinomycetes)簡介 10
二、放線菌與生理活性物質之篩選 11
三、放線菌之工業用途 13
第二節、抗真菌劑 13
一、抗真菌劑簡介 13
二、抗真菌劑之作用機制 14
1、 作用在固醇類(sterol)生合成及功能上的抗真菌劑 14
2、作用在細胞核功能上的抗真菌劑 15
3、抑制真菌細胞壁生合成的抗真菌劑 15
4、作用在能量代謝的抗真菌劑 15
三、醫藥用抗真菌劑 15
1、 Polyenes系列抗真菌劑 16
2、Azoles系列抗真菌劑 16
3、Glucan 合成抑制劑 16
4、Chitin 合成抑制劑 16
5、Nucleoside 類似物 17
四、農業用抗真菌劑(William, 1986) 18
五、peptide類抗真菌劑(Robert and Daniel, 1999) 18
第三節、醣蛋白質細胞內輸送阻害物質 19
一、醣蛋白質細胞內輸送途徑 19
二、醣蛋白質細胞內輸送程序之解明 20
1、利用Saccharomyces cerevesia 蛋白輸送分泌變異株之研究法 20
2、利用動物細胞醣蛋白分泌阻害變異株之研究法[Tufaro, 1987 #172] 20
3、醣蛋白質細胞內輸送機制之in vitro 研究法 21
4、應用選擇性醣蛋白質細胞內輸送阻害劑之研究法 21
三、醣蛋白質細胞內輸送阻害劑及其應用(Takatsuki and Tamura, 1985) 21
四、醣蛋白質細胞內輸送阻害劑之應用 23
第四節、研究策略 24
第二章、材料與方法 26
第一節、材料 26
一、培養基及培養液 26
1、放線菌篩選培養基(Orchard and Goodfellow, 1974; Wakasman, 1961) 26
2、抗真菌劑篩選培養基 27
3、放線菌鑑定用培養基 29
4、醣蛋白胞內輸送抑制物發酵培養基 30
5、動物細胞培養基 31
二、菌種、細胞株、病毒及抗體: 31
1、抗菌活性檢定用 31
2、醣蛋白胞內輸送抑制物檢定 32
三、試藥及耗材: 33
1、化學藥品: 33
2、培養基及佐劑: 33
3、有機溶劑: 33
4、Paper disc: 33
四、層析管柱: 33
第二節、方法 35
一、篩選種源庫之建立 35
1、菌種分離 35
2、菌種培養與物質萃取 36
二、放線菌菌種鑑定 37
1、形態觀察: 37
2、細胞壁組成分析: 37
三、抗真菌劑之篩選與純化 38
1、對峙培養法: 38
2、paper disc agar diffusion assay: 38
3、醱酵培養 39
4、活性物質之萃取與純化 40
5、結構鑑定: 42
6、感受性測試: 43
7、細胞毒性測試(Tada et al., 1986; Veronique et al., 1992): 44
四、醣蛋白質細胞內輸送抑制物質之篩選 45
1、抑制物質之篩選方法(Muroi et al., 1996; Seog et al., 1994) 45
2、醱酵培養 46
3、醣蛋白胞內輸送抑制物質純化 46
4、醣蛋白胞內輸送抑制物質鑑定 49
5、醣蛋白胞內輸送抑制物質機構 49
第三章、結果 52
第一節、放線菌菌株篩選 52
一、菌種分離 52
1、樣本採集: 52
2、樣本前處理(Steele, 1991)︰ 53
3、菌株分離培養基: 54
二、糞便樣本之放線菌菌株分離統計: 54
三、放線菌菌屬鑑定 55
1、形態觀察: 56
2、細胞壁組成分析: 56
第二節、活性物質之篩選 57
一、第一次對峙培養篩選 57
二、活性菌種鑑定 59
三、以植物病源菌為檢定菌之二次篩選 59
1、對峙培養法: 60
2、paper disc agar diffusion assay(Tamura et al., 1968): 61
3、菌種鑑定: 61
第三節、Streptomyces alboviridis 84A22之抗真菌物質 62
一、醱酵培養: 62
二、84A22抗真菌物質之萃取與純化 63
1、第一次Silica gel 管柱層析: 63
2、第二次Silica gel 管柱層析: 63
3、製備級silica gel HPLC: 63
4、 分析級silica gel HPLC: 63
5、C18 HPLC: 64
6、phenyl HPLC: 64
三、結構鑑定 64
1、UV spectrum 64
2、mass spectrum 64
3、1H NMR spectrum 64
4、13C NMR spectrum 64
5、2D-NMR 65
6、FT-IR spectrum 65
7、amino acid composition 65
四、抗真菌劑抗菌性測試 66
1、細菌對alboviridimycin之感受性測試 66
2、酵母菌對alboviridimycin之感受性測試 66
3、alboviridimycin對黴菌之感受性測試 66
4、alboviridimycin對細胞之細胞毒性測試 67
第四節、醣蛋白細胞內輸送抑制物質之篩選 67
一、醣蛋白細胞內輸送抑制物質之篩選 67
二、48P1I2之菌種鑑定 68
1、細胞壁成分分析 68
2、形態特徵 68
3、醣類的利用及生理特性測試 68
4、菌絲與孢子之電子顯微鏡觀察 68
三、醣蛋白質細胞內輸送抑制物質GPT48之發酵培養 69
四、GPT48之萃取與純化: 69
1、Silica gel 管柱層析 I 69
2、Silica gel Silica gel 管柱層析 II 70
3、製備級silica gel HPLC: 70
4、分析級silica gel HPLC: 70
5、C18 HPLC: 70
6、phenyl HPLC: 70
五、醣蛋白胞內輸送抑制物質GPT48結構鑑定 71
1、mass spectrum 71
2、1H NMR spectrum 71
六、醣蛋白胞內輸送抑制劑GPT48抑制機制 71
1、GPT48處理後VSV-G 蛋白於細胞內蓄積部位之分析: 71
第四章、討論 74
第一節、放線菌菌種分離 74
第二節、抗真菌物質之篩選 76
一、抗真菌劑生產菌株之篩選 76
1、篩選方法 76
2、形態異常誘發 77
二、Streptomyces alboviridis之抗真菌劑alboviridimycin 78
1、Alboviridimycin之純化與結構鑑定 78
2、alboviridimycin之抗菌特性 79
3、alboviridimycin對細胞之細胞毒性測試 80
4、後續之研究 80
第三節、醣蛋白胞內輸送抑制物質之篩選 81
一、醣蛋白胞內輸送抑制物質之篩選 81
二、Streptomyces gougerotii之醣蛋白胞內輸送抑制物質GPT48 82
1、GPT48之純化與結構鑑定 82
2、GPT48之特性 83
3、後續之研究 86
第五章、參考文獻 87
第六章、附錄 100
封面
目錄
誌謝
中文摘要
ABSTRACT
縮寫表
第一章.緒論
第一節.放線菌(Actinomyces)
一.放線菌(Actinomyces)簡介
二.放線菌與生理活性物質之篩選
三.放線菌之工業用途
第二節.抗真菌劑
一.抗真菌劑簡介
二.抗真菌劑之作用機制
三.醫藥用抗真菌劑
四.農業用抗真菌劑(William,1986)
五.Peptide類抗真菌劑(Robert and Daniel,1999)
第三節.醣蛋白質細胞內輸送阻害物質
一.醣蛋白質細胞內輸送途徑
二.醣蛋白質細胞內輸送程序之解明
三.醣蛋白質細胞內輸送阻害劑及其應用(Takatsuki and Tamura,1985)
四.醣蛋白質細胞內輸送阻害劑之應用
第四節.研究策略
第二章.材料與方法
第一節.材料
一.培養基及培養液
二.菌種、細胞株、病毒及抗體:
三.試藥及耗材:
四.層析管柱:
第二節.方法
一.篩選種源庫之建立
二.放線菌菌種鑑定
三.抗真菌劑之篩選與純化
四.醣蛋白質細胞內輸送抑制物質之篩選
第三章.結果
第一節.放線菌菌株篩選
一.菌種分離
二.糞便樣本之放線菌菌株分離統計
三.放線菌菌屬鑑定
第二節.活性物質之篩選
一.第一次對峙培養篩選
二.活性菌種鑑定
三.以植物病源菌為檢定菌之二次篩選
第三節.Streptomyces alboviridis 84A22之抗真菌物質
一.醱酵培養:
二.84A22抗真菌物質之萃取與純化
三.結構鑑定
四.抗真菌劑抗菌性測試
第四節.醣蛋白細胞內輸送抑制物質之篩選
一.醣蛋白細胞內輸送抑制物質之篩選
二.48p1I2之菌種鑑定
三.醣蛋白質細胞內輸送抑制物質GPT48之發酵培養
四.GPT48之萃取與純化:
五.醣蛋白胞內輸送抑制物質GPT48結構鑑定
六.醣蛋白胞內輸送抑制劑GPT48抑制機制
第四章 討論
第一節.放線菌菌種分離
第二節.抗真菌物質之篩選
一.抗真菌劑生產菌之篩選
二.Streptomyces alboviridis之抗真菌劑 alboviridimycin
第三節.醣蛋白胞內輸送抑制物質之篩選
一.醣蛋白胞內輸送抑制物質之篩選
二.Streptomyces gougerotii之醣蛋白胞內輸送抑制物質GPT48
第五章.參考文獻
第六章.附錄
Abu-Salah, K. M. (1996). Amphotericin B: an update. Br J Biomed Sci 53, 122-33.
Akira, K., and Tamao, E. (1992). Isolation and fraction of N-linked oligosaccharides from glycoprotein, F. Minoru and K. Akira, eds. (Tokyo/New York: Oxford University).
Albengres, E., Le Louet, H., and Tillement, J. P. (1998). Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf 18, 83-97.
Alexopoulos, C. J., and Mims, C. W. (1992). Introductory Mycology, 3rd edition: Wiley).
Anthony, J. L., and Thomas, J. W. (1999). Antifungal peptides: Novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chmother. 43, 1-11.
Antony, C., Cibert, C., Geraud, G., Santa Maria, A., Maro, B., Mayau, V., and Goud, B. (1992). The small GTP-binding protein rab6p is distributed from medial Golgi to the trans-Golgi network as determined by a confocal microscopic approach. J Cell Sci 103, 785-96.
Aridor, M., Bannykh, S. I., Rowe, T., and Balch, W. E. (1995). Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol 131, 875-93.
Arioka, M., Hirata, A., Takatsuki, A., and Yamasaki, M. (1991). Brefeldin A blocks an early stage of protein transport in Candida albicans. J Gen Microbiol 137, 1253-62.
Arnheiter, H., Dubois-Dalcq, M., and Lazzarini, R. A. (1984). Direct visualization of protein transport and processing in the living cell by microinjection of specific antibodies. Cell 39, 99-109.
Bastid, A., Meo, D., Andriantsoa, M., Laget, M., and Dumenil, G. (1986). Isolation and selection of Actinomyces producing non-polyene antifungal substances. J. Appl. Microbial. Biotechnol. 2, 453.
Burkhardt, J. K., and Argon, Y. (1989). Intracellular transport of the glycoprotein of VSV is inhibited by CCCP at a late stage of post-translational processing. J Cell Sci 92, 633-42.
Cai, S. W., Zhou, S. Y., Wang, J. Q., Li, S. Y., Zhu, X. L., Wang, J. J., and Xue, J. R. (1988). A bacteriological and helminthological investigation of a sewage- irrigated area in a Beijing suburb. Biomed Environ Sci 1, 332-8.
Chen, S. S., Doherty, R., O''Rourke, E. J., Ariel, N., and Huang, A. S. (1987). Effects of transport inhibitors on the generation and transport of a soluble viral glycoprotein. Virology 160, 482-4.
Chormonova, N. T. (1987). Isolation of Actinomadura from soil sample on selective media with kanamycin and rifampicin. Antibiotik 23, 22-26.
Clayton, Y. M. (1973). Therapy of fungal infections. Br J Dermatol 89, 423-5.
Corke, C. T., and Chase, F. E. (1956). The selective enumeration of actinomycetes in the presence of large number of fungi. Can. J. Microbiol. 2, 12-16.
Cosson, P., de Curtis, I., Pouyssegur, J., Griffiths, G., and Davoust, J. (1989). Low cytoplasmic pH inhibits endocytosis and transport from the trans- Golgi network to the cell surface. J Cell Biol 108, 377-87.
Cross, J. T., Jr., Hickerson, S. L., and Yamauchi, T. (1995). Antifungal drugs. Pediatr Rev 16, 123-9.
Cundliffe, E. (1991). Antibiotics and the search for new principles. J. Indust. Microbiol. 7, 157-161.
David, P. L., and Marcia, C. S. (1990). Isolation of Actinomycetes for biotechnological applications, P. L. David, ed.: McGraw-Hill).
Davidson, H. W., and Balch, W. E. (1993). Differential inhibition of multiple vesicular transport steps between the endoplasmic reticulum and trans Golgi network. J Biol Chem 268, 4216-26.
de Pauw, B. E., and Meunier, F. (1999). The challenge of invasive fungal infection. Chemotherapy 45 Suppl 1, 1-14.
Endo, M., Takesako, K., Kato, I., and Yamaguchi, H. (1997). Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother 41, 672-6.
Espinel-Ingroff, A. (1996). Antifungal susceptibility testing. Clin. Microbiol. Newsl. 18, 161-168.
Etienne, G., Armau, E., Dassain, M., and Tiraby, G. (1991). A screening method to identify antibiotics of the aminoglycoside family. J Antibiot (Tokyo) 44, 1357-66.
Franco, C. M. M., and Coutinho, L. E. L. (1991). Detection of novel secondary metabolites. Critical Rev. Biotech. 11, 193.
Franklin, T. J., and Snow, G. A. (1989). Biochemistry of antimicrobial action, 4th edition (London/New York: Chapman and Hall).
Fujiwara, T., Oda, K., Yokota, S., Takatsuki, A., and Ikehara, Y. (1988). Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263, 18545-52.
Gallis, H. A., Drew, R. H., and Pickard, W. W. (1990). Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12, 308-29.
Garreis-Wabnitz, C., and Kruppa, J. (1984). Intracellular appearance of a glycoprotein in VSV-infected BHK cells lacking the membrane-anchoring oligopeptide of the viral G-protein. Embo J 3, 1469-76.
Graybill, J. R. (1992). Future directions of antifungal chemotherapy [see comments]. Clin Infect Dis 14 Suppl 1, S170-81.
Grunberg, J., Kruppa, A., Paschen, P., and Kruppa, J. (1991). Intracellular formation of two soluble glycoproteins in BHK cells infected with vesicular stomatitis virus serotype New Jersey. Virology 180, 678-86.
Guan, J. L., and Rose, J. K. (1984). Conversion of a secretory protein into a transmembrane protein results in its transport to the Golgi complex but not to the cell surface. Cell 37, 779-87.
Gunij, S., Arima, K., and Beppu, T. (1983). Screening of antifungal antibiotics according to activities inducing morphological abnormalities. Agric. Biol. Chem. 47, 2061.
Gupta, A. K., Sauder, D. N., and Shear, N. H. (1994). Antifungal agents: an overview. Part I. J Am Acad Dermatol 30, 677-98; quiz 698-700.
Gupta, A. K., Sauder, D. N., and Shear, N. H. (1994). Antifungal agents: an overview. Part II [see comments]. J Am Acad Dermatol 30, 911-33; quiz 934-6.
Haller, K., and Fabry, S. (1998). Brefeldin A affects synthesis and integrity of a eukaryotic flagellum. Biochem Biophys Res Commun 242, 597-601.
Hamill, R. L. (1977). General approaches to fermentation screening. Jpn J Antibiot 30 Suppl, 164-73.
Haque, S. F., Sen, S. K., and Pal, S. C. (1992). Screening and identification of antibiotic producing strains of Streptomyces. Hindustan Antibiot Bull 34, 76-84.
Hartsel, S., and Bolard, J. (1996). Amphotericin B: new life for an old drug. Trends Pharmacol Sci 17, 445-9.
Haruo, T. (1987). Screening of Antifungal antibiotics. Gendai Kagaku Zokan 9, 16.
Hay, R. J. (1991). Antifungal therapy and the new azole compounds. J Antimicrob Chemother 28 Suppl A, 35-46.
Hay, R. J. (1994). Antifungal therapy of yeast infections. J Am Acad Dermatol 31, S6-9.
Hayakawa, M., and Nonomura, H. (1987). Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 65, 501-509.
Hayashi, T., Takatsuki, A., and Tamura, G. (1974). The action mechanism of brefeldin A. I. Growth recovery of Candida albicans by lipids from the action of brefeldin A. J Antibiot (Tokyo) 27, 65-72.
Hedman, K., Goldenthal, K. L., Rutherford, A. V., Pastan, I., and Willingham, M. C. (1987). Comparison of the intracellular pathways of transferrin recycling and vesicular stomatitis virus membrane glycoprotein exocytosis by ultrastructural double-label cytochemistry. J Histochem Cytochem 35, 233-43.
Henomatsu, N., Yoshimori, T., Yamamoto, A., Moriyama, Y., and Tashiro, Y. (1993). Inhibition of intracellular transport of newly synthesized prolactin by bafilomycin A1 in a pituitary tumor cell line, GH3 cells. Eur J Cell Biol 62, 127-39.
Hirano, T., Yamada, H., Miyazaki, T., Takatsuki, A., and Tamura, G. (1982). Effect of tunicamycin on the biosynthesis of a glycoprotein antigen, contact site A, in aggregation-competent cells of Dictyostelium discoideum. J Biochem (Tokyo) 92, 765-73.
Hoeprich, P. D. (1995). Antifungal chemotherapy. Prog Drug Res 44, 87-127.
Hotson, I. K. (1982). The avermectins: A new family of antiparasitic agents. J S Afr Vet Assoc 53, 87-90.
Huck, T. A., Porter, N., and Bushell, M. E. (1991). Positive selection of antibiotic-producing soil isolates. J. General Microbiol. 137, 2321-2329.
Igarashi, M., Kinoshita, N., Ikeda, T., Nakagawa, E., Hamada, M., and Takeuchi, T. (1997). Formamicin, a novel antifungal antibiotic produced by a strain of Saccharothrix sp. I. Taxonomy, production, isolation and biological properties. J Antibiot (Tokyo) 50, 926-931.
Ikai, K., Takesako, K., Shiomi, K., Moriguchi, M., Umeda, Y., Yamamoto, J., Kato, I., and Naganawa, H. (1991). Structure of aureobasidin A. J Antibiot (Tokyo) 44, 925-33.
Ikonen, E., Parton, R. G., Lafont, F., and Simons, K. (1996). Analysis of the role of p200-containing vesicles in post-Golgi traffic. Mol Biol Cell 7, 961-74.
Irurzun, A., Perez, L., and Carrasco, L. (1992). Involvement of membrane traffic in the replication of poliovirus genomes: effects of brefeldin A. Virology 191, 166-75.
Ivessa, N. E., Gravotta, D., De Lemos-Chiarandini, C., and Kreibich, G. (1997). Functional protein prenylation is required for the brefeldin A- dependent retrograde transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem 272, 20828-34.
Johnson, E. M., Szekely, A., and Warnock, D. W. (1998). In-vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J. Antimicrob. Chemother. 42, 741-745.
Johnson, F. (1971). The chemistry of glutarimide antibiotics. Fortschr Chem Org Naturst 29, 140-208.
Kahan, B. D., and Napoli, K. L. (1998). Role of therapeutic drug monitoring of rapamycin. Transplant Proc 30, 2189-91.
Karaivanova, V. K., Luan, P., and Spiro, R. G. (1998). Processing of viral envelope glycoprotein by the endomannosidase pathway: evaluation of host cell specificity. Glycobiology 8, 725-30.
Karen, M. P., Robert, D. N., and Michael, E. B. (1993). A method for increasing the success rate of duplicating antibiotic activity in agar and liquid culture of Streptomyces isolats in new antibiotic screens. J. Ferment. Bioeng. 76, 89-93.
Kataoka, T., Muroi, M., Ohkuma, S., Waritani, T., Magae, J., Takatsuki, A., Kondo, S., Yamasaki, M., and Nagai, K. (1995). Prodigiosin 25-C uncouples vacuolar type H(+)-ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett 359, 53-9.
Kauffman, C. A. (1996). Role of azoles in antifungal therapy. Clin Infect Dis 22 Suppl 2, S148-53.
Kauffman, C. A., and Carver, P. L. (1997). Use of azoles for systemic antifungal therapy. Adv Pharmacol 39, 143-89.
Kok, J. W., Babia, T., Filipeanu, C. M., Nelemans, A., Egea, G., and Hoekstra, D. (1998). PDMP blocks brefeldin A-induced retrograde membrane transport from golgi to ER: evidence for involvement of calcium homeostasis and dissociation from sphingolipid metabolism. J Cell Biol 142, 25-38.
Komhoff, M., Hollinshead, M., Tooze, J., and Kern, H. F. (1994). Brefeldin A induced dose-dependent changes to Golgi structure and function in the rat exocrine pancreas. Eur J Cell Biol 63, 192-207.
Krcmery, V., Jr. (1996). Emerging fungal infections in cancer patients. J Hosp Infect 33, 109-17.
Kryuchkov, V. A. (1973). Method of determining the state of actinomycetes in soil. Sov J Ecol 4, 62-3.
Labeda, D. P. (1990). Isolation of biotechnological organisms from nature.: McGraw-Hill).
Laboratiries, D. (1962). Bacto-actinomycete isolation agar. Code 0957 (Detroit USA: Difco Lab.).
Lawrence, C. H. (1956). A method for isolating actinomycetes from scabby potato tissue and soil with minimal contamination. Can. J. Bot. 34, 44-47.
Leaf, D. S., Roberts, S. J., Gerhart, J. C., and Moore, H. P. (1990). The secretory pathway is blocked between the trans-Golgi and the plasma membrane during meiotic maturation in Xenopus oocytes. Dev Biol 141, 1-12.
Lee, Y. P., and Goldman, M. (1997). The role of azole antifungal agents for systemic antifungal therapy. Cleve Clin J Med 64, 99-106.
Lees, N. D., Skaggs, B., Kirsch, D. R., and Bard, M. (1995). Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review. Lipids 30, 221-6.
Lesher, J. L., Jr. (1999). Oral therapy of common superficial fungal infections of the skin. J Am Acad Dermatol 40, S31-4.
Lodish, H. F., and Kong, N. (1983). Reversible block in intracellular transport and budding of mutant vesicular stomatitis virus glycoproteins. Virology 125, 335-48.
Lorian, L. (1980). Antibiotics in laboratory medicine (Baltimore/London: Williams & Wilkins).
Marialigeti, K., Jager, K., Szabo, I. M., Pobozsny, M., and Dzingov, A. (1984). The faecal actinomycete flora of Protracheoniscus amoenus (woodlice; Isopoda). Acta Microbiol Hung 31, 339-44.
Martin, J. F. (1977). Biosynthesis of polyene macrolide antibiotics. Annu Rev Microbiol 31, 13-38.
Miller, D. K., and Lenard, J. (1980). Inhibition of vesicular stomatitis virus infection by spike glycoprotein. Evidence for an intracellular, G protein-requiring step. J Cell Biol 84, 430-7.
Misato, T., Ko, K., and Yamaguchi, I. (1977). Use of antibiotics in agriculture. Adv Appl Microbiol 21, 53-88.
Miura, I., Muroi, M., Shiragami, N., Yamaguchi, I., and Takatsuki, A. (1996). Effects of mepanipyrim on intracellular trafficking: a comparative study on its effects on exocytic and endocytic trafficking of proteins, sphingolipids, and cholesterol. Biosci Biotechnol Biochem 60, 1690-7.
Mizrahi, A., O''Malley, J. A., Carter, W. A., Takatsuki, A., Tamura, G., and Sulkowski, E. (1978). Glycosylation of interferons. Effects of tunicamycin on human immune interferon. J Biol Chem 253, 7612-5.
Morrison, T. G., and Ward, L. J. (1984). Intracellular processing of the vesicular stomatitis virus glycoprotein and the Newcastle disease virus hemagglutinin-neuraminidase glycoprotein. Virus Res 1, 225-39.
Morrow, J. D. (1991). Fluconazole: a new triazole antifungal agent. Am J Med Sci 302, 129-32.
Muroi, M., Kaneko, N., Suzuki, K., Nishio, T., Oku, T., Sato, T., and Takatsuki, A. (1996). Efrapeptins block exocytic but not endocytic trafficking of proteins. Biochem Biophys Res Commun 227, 800-9.
Muroi, M., Shiragami, N., Nagao, K., Yamasaki, M., and Takatsuki, A. (1993). Folimycin (concanamycin A), a specific inhibitor of V-ATPase, blocks intracellular translocation of the glycoprotein of vesicular stomatitis virus before arrival to the Golgi apparatus. Cell Struct Funct 18, 139-49.
Muroi, M., Shiragami, N., and Takatsuki, A. (1994). Destruxin B, a specific and readily reversible inhibitor of vacuolar- type H(+)-translocating ATPase. Biochem Biophys Res Commun 205, 1358-65.
Muroi, M., Suehara, K., Wakusawa, H., Suzuki, K., Sato, T., Nishimura, T., Otake, N., and Takatsuki, A. (1996). Novel blockade of cell surface expression of virus glycoproteins by leucinostatin A. J Antibiot (Tokyo) 49, 1119-26.
Nielsen, T. H., Christophersen, C., Anthoni, U., and Sorensen, J. (1999). Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87, 80-90.
Nonomura, H., and Hayakwa, M. (1988). New methods for the selective isolation of soil actinomycetes., Y. Okami, T. Beppu and H. Ogawara, eds. (Tokyo: Japan Scientific Societies).
Nonomura, H., and Ohara, Y. (1969). The distribution of actinomycetes in soil. VI. A selective plate-culture isolation method for Microbispora and Streptosporangium strains. Part I. J. fement. Technol. 47, 463-469.
Oda, K., Hirose, S., Takami, N., Misumi, Y., Takatsuki, A., and Ikehara, Y. (1987). Brefeldin A arrests the intracellular transport of a precursor of complement C3 before its conversion site in rat hepatocytes. FEBS Lett 214, 135-8.
Omura, S. (1992). Trends in the search for bioactive microbial metabolites. J. Industryal. Microbiol. 10.
Omura, S., and Tanaka, Y. (1991). Strategy and methods in screening of microbial metabolites for plant protection., F. H., ed.: VCH).
Orchard, V. A., and Goodfellow, M. (1974). The selective isolation of Nocardia from soil using antibiotics. J. Gen. Microbiol. 85, 160-162.
Pal, R., Mumbauer, S., Hoke, G. M., Takatsuki, A., and Sarngadharan, M. G. (1991). Brefeldin A inhibits the processing and secretion of envelope glycoproteins of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 7, 707-12.
Palokangas, H., Metsikko, K., and Vaananen, K. (1994). Active vacuolar H+ATPase is required for both endocytic and exocytic processes during viral infection of BHK-21 cells. J Biol Chem 269, 17577-85.
Panthier, J. J., Diem, H. G., and Dommergues, Y. (1979). Rapid method to enumerate and isolate soil actinomycetes antagonistic toward rhizobia. Soil Biol. Biochem. 11, 443-445.
Pickup, K. M., Nolan, R. D., and Bushell, M. E. (1993). A method for increasing the success rate of duplicating antibiotic activity in agar and liquid cultures of Streptomyces isolates in new antibiotic screens. J. Fermen. Bioeng. 76, 89-93.
Riley, H. D., Jr. (1974). Therapy with amphotericin B and other new antifungal agents. J Okla State Med Assoc 67, 141-5.
Robert, E. W. H., and Daniel, S. C. (1999). Peptide antibiotics. Antimicrob. Agents Chmother. 43, 1317-1323.
Rose, J. K., and Bergmann, J. E. (1983). Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein. Cell 34, 513-24.
Seog, D. H., Yamasaki, M., and Takatsuki, A. (1994). SS33410, an inhibitor for inflammation, blocks the intracellular transport of VSV G glycoprotein in BHK cells. Biochem Biophys Res Commun 199, 1073-80.
Shah, J. K. (1971). Actinomycosis: a ten year review. East Afr Med J 48, 496-501.
Shervani, Z., Sarkar, A. K., and Bachhawat, B. K. (1991). Polyene antibiotics in the membrane environment. Indian J Biochem Biophys 28, 227-32.
Shinji, M. (1996). Actinomycete micrographs, M. Shinji, H. Masa, H. Kunimoto, K. Takuji, S. Akio, V. Gernot and Y. Akira, eds. (Tokyo: The Society of Actinoycetes Japan).
Shirling, E. B., and D., G. (1966). Methods for characterization of Stretpmyces species. Int. J. Syst. Bacteriol. 16, 313-340.
Smith, G. R., Barton, S. A., and Wallace, L. M. (1991). A sensitive method for isolating Fusobacterium necrophorum from faeces. Epidemiol Infect 106, 311-7.
Steele, D. B. (1991). Techniques for selection of industrially important microorganisms. Annu. Rev. Microbiol. 45, 89-106.
Strous, G. J., Willemsen, R., van Kerkhof, P., Slot, J. W., Geuze, H. J., and Lodish, H. F. (1983). Vesicular stomatitis virus glycoprotein, albumin, and transferrin are transported to the cell surface via the same Golgi vesicles. J Cell Biol 97, 1815-22.
Tada, H., Shiho, O., Kurushima, K., Koyama, M., and Tsukamoto, K. (1986). An improved colorimetric assay for interleukin 2. J. Immunol. Methods 93, 157-165.
Takatsuki, A., Arima, K., and Tamura, G. (1971). Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot (Tokyo) 24, 215-23.
Takatsuki, A., Hosoda, J., Tamura, G., and Arima, K. (1969). Screening of antiviral antibiotics from actinomycetes: correlation between antiviral activity, cytotoxicity and antibacterial activity. (Studies on antiviral and antitumor antibiotics. XI). J Antibiot (Tokyo) 22, 171-3.
Takatsuki, A., Muroi, M., and Yamasaki, M. (1993). [Inhibitors of intracellular translocation of glycoproteins]. Tanpakushitsu Kakusan Koso 38, 1704-16.
Takatsuki, A., and Tamura, G. (1985). [Inhibitors affecting synthesis and intracellular translocation of glycoproteins as probes]. Tanpakushitsu Kakusan Koso 30, 417-40.
Takesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., Kato, I., and Yamaguchi, H. (1991). Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. J Antibiot (Tokyo) 44, 919-24.
Takesako, K., Kuroda, H., Inoue, T., Haruna, F., Yoshikawa, Y., Kato, I., Uchida, K., Hiratani, T., and Yamaguchi, H. (1993). Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot (Tokyo) 46, 1414-20.
Takesako, K., Mizutani, S., Sakakibara, H., Endo, M., Yoshikawa, Y., Masuda, T., Sono-Koyama, E., and Kato, I. (1996). Precursor directed biosynthesis of aureobasidins. J Antibiot (Tokyo) 49, 676-81.
Tamura, G., Ando, K., Suzuki, S., Takatsuki, A., and Arima, K. (1968). Antiviral activity of brefeldin A and verrucarin A. J Antibiot (Tokyo) 21, 160-1.
Tamura, G., Suzuki, S., Takatsuki, A., Ando, K., and Arima, K. (1968). Ascochlorin, a new antibiotic, found by the paper-disc agar-diffusion method. I. Isolation, biological and chemical properties of ascochlorin. (Studies on antiviral and antitumor antibiotics. I). J Antibiot (Tokyo) 21, 539-44.
Terrell, C. L. (1999). Antifungal agents. Part II. The azoles. Mayo Clin Proc 74, 78-100.
Thrum, H. (1983). Approaches to new antibacterial and antiviral antibiotics. Riv Biol 76, 349-57.
Tuite, M. F. (1992). Antifungal drug development: the identification of new targets. Trends in Biotechnol. 10, 235.
Vanden Bossche, H., Dromer, F., Improvisi, I., Lozano-Chiu, M., Rex, J. H., and Sanglard, D. (1998). Antifungal drug resistance in pathogenic fungi. Med Mycol 36 Suppl 1, 119-28.
Veronique, J., Jacques, B., and Patrick, Y. (1992). In vitro models for studying toxicity of antifungal agents. Antimicrob. Agents Chemother. 36, 1799-1804.
Vincent, T. A. (1999). Current and future antifungal therapy: new targets or antifungal agents. J. Antimicrob. Chemother. 44, 151-162.
Viscoli, C., Castagnola, E., and Machetti, M. (1997). Antifungal treatment in patients with cancer. J Intern Med Suppl 740, 89-94.
Viviani, M. A., de Marie, S., Graybill, J. R., Yamaguchi, H., Anaissie, E., and Caillot, D. (1998). New approaches to antifungal chemotherapy. Med Mycol 36 Suppl 1, 194-206.
Wakasman, S. A. (1961). Certain important media for the study of actinomycetes. (Baltimore, USA: Williams and Wilkins).
Wellington, E. M. H., and Williams, S. T. (1979). Preservation of actinomycete inoculum in frozen glycerol. Microbios Lett. 6, 151-157.
William, A. M. (1986). Agriculture uses of antibiotics.: The American Chemical Society).
Williams, S. T., Davies, F. L., Mayfield, C. I., and Kahn, M. R. (1971). Studies on the ecology of actinomycetes in soil. II: The pH requirements of streptomycetes from two acid soils. Soil Biol. Biochem. 3, 187-195.
Williams, S. T., Sharpe, M. E., and Holt, J. G. V. W. a. W., Baltimore, USA. (1989). Bergey''s Manual of Systematic Bacteriology, Volume 4 (Baltimore, USA.: Williams and Wilkins).
田中晴雄,(1990) 抗真菌抗生物質のスクリ-ニング,パイオサンエンス戰略マニユアル:新しい素材とマ-カ-,プロ-ブeds 瀨野悍二. pp.16. 共立出版。
黑田久寅(1978) 基礎微生物藥品化學,p267~270,東京廣川書局發行。
陳家鐘 (1993) 世界農藥研究發展趨勢,藥試所專題報導 第28期 ,臺灣省農業藥物毒物試驗所發行。
孫守恭 (1993) 植物病理學通論,藝軒圖書出版社印行。
早川正幸、野々村英夫(1993) 土壤放射菌の選擇分離法,別府輝彥ら集,日本放射菌學會。
野々村英夫,小原巖(1969) 土壤中における放射菌の分布(第6報). Microbispora およびStreptosporangium 屬の選擇的平板分離法(その1).發酵工學,49: 904-912.
長谷川武治(1979) 微生物の分類と同定,pp155-202 ,學會出版セんタ-。
阮繼生、劉志桓、梁麗糯、楊德成(1990) 放線菌研究及應用,科學出版社出版。
寺田宏、古川宏(1991) 醫藥品の開發:第五卷 生理活性物質の分離と精製,296-302,東京廣川書局。
清野昭雄(1985) 放線菌の同定實驗法,日本放線菌學會編。
新井正(1988) 抗真菌化學療法の歷史と展望,微生物,Vol. 4,No. 1,3-51。
新井正(1980) 內臟真菌症化學療法劑の作用機作と耐性,日本臨床,38卷特集:內臟真菌症,153-162。
池本秀雄(1980) 內臟真菌症の治療,とくに化學療法,日本臨床,38卷特集:內臟真菌症,146-152。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top