Andreevskaia, A. and Bergler, S. (2008). When Specialists and Generalists Work Together: Overcoming Domain Dependence in Sentiment Tagging. Proceedings of ACL, pp. 290-298.
Blei, D.M., Ng, A.Y., and Jordan, M.I. (2003). Latent Dirichlet Allocation. The Journal of Machine Learning Research, 3, pp. 993-1022.
Chang, C.C. and Lin, C.J., LibSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/ , 2008.
Chen, K.J. and Liu, S.H. (1992). Word Identification for Mandarin Chinese Sentences. Proceedings of COLING 1992, pp. 101-107.
Cilibrasi, R.L. and Vitanyi, P.M. (2007). The Google Similarity Distance. IEEE Transactions on Knowledge and Data Engineering, Vol.19, No.3, pp. 370-383.
CKIP中文斷詞系統. Available from http://ckipsvr.iis.sinica.edu.tw/
Duan, X., He, T. and Song, L. (2010). Research on Sentiment Classification of Blog based on PMI-IR, Proceedings of 2010 International Conference on Natural Language Processing and Knowledge Engineering, pp. 1-6.
Facebook. Available from http://www.facebook.com
FumouDiscuss. Available from http://webptt.com/m.aspx?n=bbs/FuMouDiscuss/index.html
Ghorpade, T. and Ragha, L. (2012). Featured Based Sentiment Classification for Hotel Reviews using NLP and Bayesian Classification. Proceedings of 2012 International Conference on Communication, Information &; Computing Technology, pp. 1-5.
Harman, D. (1988). Towards Interactive Query Expansion, Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 322-323.
Hofmann, T. (1999,). Probabilistic Latent Semantic Indexing. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50-57.
Huang, S., Han, W., Que, X. and Wang, W. (2013). Polarity Identification of Sentiment Words based on Emoticons, Proceedings of 2013 9th International Conference on Computational Intelligence and Security, pp. 134 - 138.
ICTCLAS. Available from http://ictclas.nlpir.org/
Jaynes, E.T. (1957). Information Theory and Statistical Mechanics. Physical review, 106(4), pp. 620-630.
John, G.H. and Langley, P. (1995). Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh conference on Uncertainty in Artificial Intelligence, pp. 338-345.
Khan, K., Baharudin, B.B. and Khan, A. (2009). Mining Opinion from Text Documents: A Survey. Proceedings of 2009 3rd IEEE International Conference on Digital Ecosystems and Technologies, pp. 217-222.
Ku, L.W., and Chen, H.H. (2007). Mining Opinions from the Web: Beyond Relevance Retrieval. Journal of the American Society for Information Science and Technology, 58(12), pp. 1838-1850
Ku, L.W., Liang, Y.T., and Chen, H.H. (2006). Opinion Extraction, Summarization and Tracking in News and Blog Corpora. AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, Vol. 100107.
Landis, J.R. and Koch, G.G. 1977. The Measurement of Observer Agreement for Categorical Data Biometrics, pp. 159-174.
Li, S., He, H., Xu, W. R. and Guo, J. (2009). Automatic Chinese Sentiment Word Extraction based on Maximum Entropy. Proceedings of the 2009 International Conference on Wavelet Analysis and Pattern Recognition, Baoding, pp. 437- 441.
Li, Z. H., Xu, Y. and Geva, S. (2008). Text Mining based Query Expansion for Chinese IR. Proceedings of the Australasian Language Technology Association Workshop 2008, pp. 73-78.
Lu, B. and Tsou, B.K. (2010). Combining a Large Sentiment Lexicon and Machine Learning for Subjectivity Classification. Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, pp. 3311-3316.
Luo, J., Meng, B., Tu, X.H. and Gu, J.G. (2010). Selecting Good Expansion Terms based on Google Similarity Distance. Proceedings of 2010 2nd International Conference on Future Computer and Communication, V2-711-V2-714.
Pang, B. and Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval, 2(1-2), pp. 1-135.
PTT八卦版. Available from http://webptt.com/m.aspx?n=bbs/Gossiping/index.html
Qiu, L., Zhang, W., Hu, C. and Zhao, K. (2009). SELC: a Self-supervised Model for Sentiment Classification. Proceedings of CIKM, pp. 929-936.
Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA.
Sim, J. and Wright, C.C. (2005). The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements, Physical Therapy, 85, pp. 257-268.
Stanford Parser. Available from http://nlp.stanford.edu/software/lex-parser.shtml
Stop Word List. Available from https://sites.google.com/site/kevinbouge/stopwords-lists
Sui, H., Jianping, Y., Hongxian, Z. and Wei, Z. (2012). Sentiment Analysis of Chinese Micro-blog Using Semantic Sentiment Space Model. Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, pp.1443-1447.
Tu, X.H., He, T.T., Luo, J., Chen, J.G., Chen, L. and Yang, Z.K. (2008). Chinese Query Expansion Based on Topic-Relevant Terms. Proceedings of International Conference on Natural Language Processing and Knowledge Engineering, pp. 1 -5.
Udn Blogs. Available from http://blog.udn.com/
Vapnik, N.V. (1995). The Nature of Statistical Learning Theory. Springer.
Viera, A.J. and Garrett, J.M. (2005). Understanding Interobserver Agreement: the Kappa Statistic, Family Medicine, 37(5), pp. 360-363.
Wang, B., Min, Y., Huang, Y., Liu, Y., Li, X., Sun, Y. and Sun, C. (2013). Chinese Reviews Sentiment Classification based on Quantified Sentiment Lexicon and Fuzzy Set. Proceedings of 2013 International Conference on Information Science and Technology, pp.677-680.
Wang, J.H. and Lee, C.C (2011). Unsupervised Opinion Phrase Extraction and Rating in Chinese Blog Posts. Proceedings of 2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing, pp. 820-823.
Yahoo奇摩新聞搜尋引擎. Available from https://tw.news.yahoo.com/
Yang, Y. and Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text Categorization. ICML, Vol. 97, pp. 412-420.
Yang, Y. and Zhou, Y.Q. (2011). Chinese Sentiment Classification based on Semantic Structure of Sentences. Proceedings of 2011 International Conference on Computer Science and Network Technology, pp. 1745-1749.
Ye, Q., Zhang, Z. and Law, R. (2009). Sentiment Classification of Online Reviews to Travel Destinations by Supervised Machine Learning Approaches. Expert Systems with Applications, vol. 36, pp. 6527-6535.
Zan, H., Kou, K., Tian, J. and Sin, R. (2010). Applications of Chinese Sentiment Categorization to Digital Products Reviews. Proceedings of 2010 International Conference on Natural Language Processing and Knowledge Engineering, pp.1-5.
Zhai, Z., Liu, B., Wang, J., Xu, H., and Jia, P. (2011). Product Feature Grouping for Opinion Mining Using Soft-Constraints and EM. Intelligent Systems, IEEE, vol. PP, issue no.99, pp. 1.
Zhai, Z., Xu, H. and Jia, P. (2010). An Empirical Study of Unsupervised Sentiment Classificationof Chinese Reviews. Tsinghua Science &; Technology, 15(6), pp. 702-708.
Zhang, H., Yu, Z., Xu, M. and Shi, Y (2012). An Improved Method to Building a Score Lexiconfor Chinese Sentiment Analysis. Proceedings of 2012 Eighth International Conference Semantics, Knowledge and Grids, pp. 241 - 244.
Zheng, W. and Ye, Q. (2009). Sentiment Classification of Chinese Traveler Reviews by Support Vector Machine Algorithm, 2009 Third International Symposiumon Intelligent Information Technology Applications, vol. 3, pp. 335-338,.
Zhuo, S., Wu, X. and Luo, X. (2014). Chinese Text Sentiment Analysis based on Fuzzy Semantic Model. Proceedings of 2014 IEEE 13th International Conference on Cognitive Informatics &; Cognitive Computing (ICCI*CC), pp. 535-540.
石琢暐,支援向量機簡介,2011年,Available from http://eeil.ime.ncku.edu.tw/knowledgebase/zhi-yuan-xiang-liang-ji-support-vector-machine
林揚書,網際網路新聞文章心情偵測之研究,國立交通大學資訊工程所碩士論文,2009年。知網情感分析用詞語集. Available from http://www.keenage.com/
游和正,黃挺豪,陳信希,領域相關詞彙極性分析及文件情緒分類之研究. 中文計算語言學期刊,2012年。
黃建銘,支撐向量機的自動參數選擇,國立台灣科技大學資訊工程系碩士論文,2005年。