|
1.Miller, W.H., et al. Mechanisms of action of arsenic trioxide. Cancer Research 62, 3893-3903 (2002). 2.SM., A. Arsenic and old myths. R I Med. 77, 233-234 (1994 ). 3.Gamble, M.V., et al. Folate, Homocysteine, and Arsenic Metabolism in Arsenic-Exposed Individuals in Bangladesh. Environmental Health Perspectives 113, 1683-1688 (2005). 4.Rossman, T.G. Mechanism of arsenic carcinogenesis: an integrated approach. Mutation research 533, 37-65 (2003). 5.Simeonova, P.P. & Luster, M.I. Arsenic carcinogenicity: relevance of c-Src activation. Molecular and Cellular Biochemistry 234-235, 277-282 (2002). 6.Gebel, T. Confounding variables in the environmental toxicology of arsenic. Toxicology 144, 155-162 (2000). 7.Schoen, A., Beck, B., Sharma, R. & Dube, E. Arsenic toxicity at low doses: epidemiological and mode of action considerations. Toxicology and applied pharmacology 198, 253-267 (2004). 8.Germolec, D.R., et al. Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors. The American journal of pathology 153, 1775-1785 (1998). 9.Morales, K.H., Ryan, L., Kuo, T.L., Wu, M.M. & Chen, C.J. Risk of internal cancers from arsenic in drinking water. Environmental Health Perspectives 108, 655-661 (2000). 10.Centeno, J.A., et al. Pathology related to chronic arsenic exposure. Environmental Health Perspectives 110 883-886 (2002). 11.Tseng, W.P., et al. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the National Cancer Institute 40, 453-463 (1968 ). 12.Simeonova, P.P. & Luster, M.I. Mechanisms of arsenic carcinogenicity: genetic or epigenetic mechanisms? Journal of environmental pathology, toxicology and oncology 19, 281-286 (2000). 13.Hamadeh, H.K., Trouba, K.J., Amin, R.P., Afshari, C.A. & Germolec, D. Coordination of altered DNA repair and damage pathways in arsenite-exposed keratinocytes. Toxicological sciences 69, 306-316 (2002). 14.Burns, M., Joyce, M. & Eustace, P.W. Tension pneumoperitoneum due to perforated duodenal ulcer. Irish journal of medical science 173, 223 ( 2004). 15.Germolec, D.R., et al. Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors. The American journal of pathology 153, 1775-1785 (1998). 16.Rossman, T.G., Uddin, A.N. & Burns, F.J. Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicology and applied pharmacology 198, 394-404 (2004). 17.Ouyang, W., Li, J., Ma, Q. & Huang, C. Essential roles of PI-3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells. Carcinogenesis 27, 864-873 (2006). 18.Hu, J., et al. Long-term survival and prognostic study in acute promyelocytic leukemia treated with all-trans-retinoic acid, chemotherapy, and As2O3: an experience of 120 patients at a single institution. International journal of hematology 70, 248-260 (1999). 19.Bachleitner-Hofmann, T., Kees, M. & Gisslinger, H. Arsenic trioxide: acute promyelocytic leukemia and beyond. Leukemia & lymphoma 43, 1535-1540 (2002). 20.Cuzick, J., Evans, S., Gillman, M. & Price Evans, D.A. Medicinal arsenic and internal malignancies. British journal of cancer 45, 904-911 (1982). 21.Soucy, N.V., et al. Arsenic stimulates angiogenesis and tumorigenesis in vivo. Toxicological sciences 76, 271-279 (2003). 22.Zhao, C.Q., Young, M.R., Diwan, B.A., Coogan, T.P. & Waalkes, M.P. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proceedings of the National Academy of Sciences of the United States of America 94, 10907-10912 (1997). 23.Liu, B., et al. Opposing effects of arsenic trioxide on hepatocellular carcinomas in mice. Cancer science 97, 675-681 (2006). 24.Straub, A.C., et al. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice. Toxicology and applied pharmacology 222, 327-336 (2007). 25.Huang, H.S., et al. Opposite effect of ERK1/2 and JNK on p53-independent p21WAF1/CIP1 activation involved in the arsenic trioxide-induced human epidermoid carcinoma A431 cellular cytotoxicity. Journal of biomedical science 13, 113-125 (2006). 26.Yu, H.S., Liao, W.T. & Chai, C.Y. Arsenic carcinogenesis in the skin. Journal of biomedical science 13, 657-666 (2006). 27.Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & development 13, 1501-1512 (1999). 28.Ohtsubo, M., Gamou, S. & Shimizu, N. Antisense oligonucleotide of WAF1 gene prevents EGF-induced cell-cycle arrest in A431 cells. Oncogene 16, 797-802 (1998). 29.Biggs, J.R., Kudlow, J.E. & Kraft, A.S. The role of the transcription factor Sp1 in regulating the expression of the WAF1/CIP1 gene in U937 leukemic cells. The Journal of biological chemistry 271, 901-906 (1996). 30.Gulbis, J.M., Kelman, Z., Hurwitz, J., O'Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87, 297-306 (1996). 31.Ogryzko, V.V., Wong, P. & Howard, B.H. WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Molecular and cellular biology 17, 4877-4882 (1997). 32.Missero, C., et al. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proceedings of the National Academy of Sciences of the United States of America 92, 5451-5455 (1995). 33.Cattoretti, G., et al. Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. The Journal of pathology 168, 357-363 (1992). 34.Shiohara, M., et al. Absence of WAF1 mutations in a variety of human malignancies. Blood 84, 3781-3784 (1994). 35.Tron, V.A., Tang, L., Yong, W.P. & Trotter, M.J. Differentiation-associated overexpression of the cyclin-dependent kinase inhibitor p21waf-1 in human cutaneous squamous cell carcinoma. The American journal of pathology 149, 1139-1146 (1996). 36.Van-Oijen, M.G., Tilanus, M.G., Medema, R.H. & Slootweg, P.J. Expression of p21 (Waf1/Cip1) in head and neck cancer in relation to proliferation, differentiation, p53 status and cyclin D1 expression. Journal of oral pathology & medicine 27, 367-375 (1998). 37.Jerome-Morais, A., Rahn, H.R., Tibudan, S.S. & Denning, M.F. Role for Protein Kinase C-alpha in Keratinocyte Growth Arrest. The Journal of investigative dermatology (2009). 38.Hsiao, Y.P., Huang, H.L., Lai, W.W., Chung, J.G. & Yang, J.H. Antiproliferative effects of lactic acid via the induction of apoptosis and cell cycle arrest in a human keratinocyte cell line (HaCaT). Journal of dermatological science 54, 175-1784 (2009). 39.Murgo, A.J. Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. The oncologist 6 22-28 (2001). 40.Rojewski, M.T., Körper, S. & Schrezenmeier, H. Arsenic trioxide therapy in acute promyelocytic leukemia and beyond: from bench to bedside. Leukemia & lymphoma 45, 2387-2401 (2004). 41.Qu, W., et al. The nitric oxide prodrug, V-PYRRO/NO, mitigates arsenic-induced liver cell toxicity and apoptosis. Cancer letters 256, 238-245 (2007). 42.Park, W.H., et al. Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer research 60, 3065-3071 (2000). 43.Cavigelli, M., et al. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. The EMBO journal 15, 6269-6279 (1996). 44.Liu, Z.M. & Huang, H.S. Arsenic trioxide phosphorylates c-Fos to transactivate p21(WAF1/CIP1) expression. Toxicology and applied pharmacology 233, 297-307 (2008). 45.Shaulian, E. & Karin, M. AP-1 in cell proliferation and survival. Oncogene 20, 2390-2400 (2001). 46.Angel, P. & Karin, M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochimica et biophysica acta 1072, 129-157 (1991). 47.Raivich, G. c-Jun expression, activation and function in neural cell death, inflammation and repair. Journal of neurochemistry 107, 898-906 (2008). 48.Smeal T, B.B., Mercola DA, Birrer M, Karin M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature. 354, 494-496 (1991). 49.Adler, V., Polotskaya, A., Wagner, F. & Kraft, A.S. Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. The Journal of biological chemistry 267, 17001-17005 (1992). 50.Treisman, R. Regulation of transcription by MAP kinase cascades. Current opinion in cell biology 8, 205-215 (1996). 51.Papavassiliou, A.G., Treier, M. & Bohmann, D. Intramolecular signal transduction in c-Jun. The EMBO journal 14, 2014-2019 (1995). 52.Okumura, K., Hosoe, Y. & Nakajima, N. c-Jun and Sp1 family are critical for retinoic acid induction of the lamin A/C retinoic acid-responsive element. Biochemical and biophysical research communications 320, 487-492 (2004). 53.Kardassis, D., Papakosta, P., Pardali, K. & Moustakas, A. c-Jun transactivates the promoter of the human p21WAF1/Cip1 gene by acting as a superactivator of the ubiquitous transcription factor Sp1. The Journal of biological chemistry 274, 29572-29581 (1999). 54.Chen, B.K. & Chang, W.C. Functional interaction between c-Jun and promoter factor Sp1 in epidermal growth factor-induced gene expression of human 12(S)-lipoxygenase. Proceedings of the National Academy of Sciences of the United States of America 97, 10406-10411 (2000). 55.Wang, Y.N. & Chang, W.C. Induction of disease-associated keratin 16 gene expression by epidermal growth factor is regulated through cooperation of transcription factors Sp1 and c-Jun. The Journal of biological chemistry 278, 45848-45857 (2003). 56.Wu, Y., Zhang, X. & Zehner, Z.E. c-Jun and the dominant-negative mutant, TAM67, induce vimentin gene expression by interacting with the activator Sp1. Oncogene 22, 8891-8901 (2003). 57.Wang, C.H., et al. Transcriptional repression of p21Waf1/Cip1/Sdi1 gene by c-jun through Sp1 site. Biochemical and biophysical research communications 270, 303-310 (2000). 58.Bost, F., et al. The defective transforming phenotype of c-Jun Ala(63/73) is rescued by mutation of the C-terminal phosphorylation site. Oncogene 20, 7425-7429 (2001). 59.Boyle WJ, S.T., Defize LH, Angel P, Woodgett JR, Karin M and Hunter T. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64, 574-584 (1991). 60.Wei, W., Jin, J., Schlisio, S., Harper, J.W. & Kaelin, W.G., Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25-33 (2005). 61.Doble, B.W. & Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. Journal of cell science 116, 1175-1186 (2003). 62.Parker, P.J., Caudwell, F.B. & Cohen, P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. European journal of biochemistry 130, 227-234 (1983). 63.Embi, N., Rylatt, D.B. & Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. European journal of biochemistry 107, 519-527 (1980). 64.Jope, R.S., Yuskaitis, C.J. & Beurel, E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochemical research 32, 577-595 (2007). 65.Cohen, P. & Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nature reviews. Drug discovery 3, 479-487 (2004). 66.Rayasam, G.V., Tulasi, V.K., Sodhi, R., Davis, J.A. & Ray, A. Glycogen synthase kinase 3: more than a namesake. British journal of pharmacology 156, 885-898 (2009). 67.Woodgett, J.R. cDNA cloning and properties of glycogen synthase kinase-3. Methods in enzymology 200, 564-577 (1991). 68.Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. The EMBO journal 9, 2431-2438 (1990). 69.Hoeflich, K.P., et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86-90 ( 2000). 70.Markou, T., et al. Glycogen synthase kinases 3 alpha and 3 beta in cardiac myocytes: regulation and consequences of their inhibition. Cellular signalling 20, 206-218 (2008). 71.Garrido, J.J., Simon, D., Varea, O. & Wandosell, F. GSK3 alpha and GSK3 beta are necessary for axon formation. FEBS letters 581, 1579-1586 (2007). 72.Plyte, S.E., Hughes, K., Nikolakaki, E., Pulverer, B.J. & Woodgett, J.R. Glycogen synthase kinase-3: functions in oncogenesis and development. Biochimica et biophysica acta 1114, 147-162 (1992). 73.Stambolic, V. & Woodgett, J.R. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. The Biochemical journal 303 701-704 (1994). 74.Eldar-Finkelman, H., Seger, R., Vandenheede, J.R. & Krebs, E.G. Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. The Journal of biological chemistry 270, 987-990 (1995). 75.Sutherland, C., Leighton, I.A. & Cohen, P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. The Biochemical journal 296 15-19 (1993). 76.Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789 (1995). 77.Shaw, M., Cohen, P. & Alessi, D.R. The activation of protein kinase B by H2O2 or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. The Biochemical journal 336 241-246 (1998). 78.Bijur, G.N., De Sarno, P. & Jope, R.S. Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. The Journal of biological chemistry 275, 7583-7590 (2000). 79.Quevedo, C., Alcazar, A. & Salinas, M. Two different signal transduction pathways are implicated in the regulation of initiation factor 2B activity in insulin-like growth factor-1-stimulated neuronal cells. The Journal of biological chemistry 275, 19192-19197 (2000). 80.Cui, H., Meng, Y. & Bulleit, R.F. Inhibition of glycogen synthase kinase 3 beta activity regulates proliferation of cultured cerebellar granule cells. Brain research. Developmental brain research 111, 177-188 (1998). 81.Lin, R.Z., Hu, Z.W., Chin, J.H. & Hoffman, B.B. Heat shock activates c-Src tyrosine kinases and phosphatidylinositol 3-kinase in NIH3T3 fibroblasts. The Journal of biological chemistry 272, 31196-31202 (1997). 82.Bijur, G.N. & Jope, R.S. Glycogen synthase kinase-3b is highly activated. Journal of neurochemistry 14, 2415-2419 (2003). 83.Diehl, J.A., Cheng, M., Roussel, M.F. & Sherr, C.J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes & development 12, 3499-3511 (1998). 84.Bijur, G.N. & Jope, R.S. Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta. The Journal of biological chemistry 276, 37436-37442 (2001). 85.Ferkey, D.M. & Kimelman, D. GSK-3: new thoughts on an old enzyme. Developmental biology 225, 471-479 (2000). 86.Farago, M., et al. Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis. Cancer research 65, 5792-5801 (2005). 87.Wang, Y., et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer research 66, 11462-11470 (2006). 88.Doble, B.W. & Woodgett, J.R. Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells, tissues, organs 185, 73-84 (2007). 89.Cao, Q., Lu, X. & Feng, Y.J. Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell research 16, 671-677 (2006). 90.Shakoori, A., et al. Deregulated GSK3 beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochemical and biophysical research communications 334, 1365-1373 (2005). 91.Ougolkov, A.V., et al. Aberrant nuclear accumulation of glycogen synthase kinase-3 beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clinical cancer research 12, 5074-5081 (2006). 92.Rossig, L., Badorff, C., Holzmann, Y., Zeiher, A.M. & Dimmeler, S. Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. The Journal of biological chemistry 277, 9684-9689 (2002). 93.Lee, J.Y., Yu, S.J., Park, Y.G., Kim, J. & Sohn, J. Glycogen synthase kinase 3 beta phosphorylates p21WAF1/CIP1 for proteasomal degradation after UV irradiation. Molecular and cellular biology 27, 3187-3198 (2007). 94.Bode, A.M. & Dong, Z. The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Critical reviews in oncology/hematology 42, 5-24 (2002). 95.Kwok, T.T., Mok, C.H. & Menton-Brennan, L. Up-regulation of a mutant form of p53 by doxorubicin in human squamous carcinoma cells. Cancer research 54, 2834-2836 (1994). 96.Chen, B.K., et al. PP2B-mediated dephosphorylation of c-Jun C terminus regulates phorbol ester-induced c-Jun/Sp1 interaction in A431 cells. Molecular biology of the cell 18, 1118-1127 (2007). 97.Meyers, J.A., Sanchez, D., Elwell, L.P. & Falkow, S. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. Journal of bacteriology 127, 1529-1537 (1976). 98.Nikolakaki, E., Coffer, P.J., Hemelsoet, R., Woodgett, J.R. & Defize, L.H. Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene 8, 833-840 (1993). 99.Jope, R.S. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends in pharmacological sciences 24, 441-443 (2003). 100.Ding, Q., et al. Erk associates with and primes GSK-3 beta for its inactivation resulting in upregulation of beta-catenin. Molecular Cell 19, 159-170 (2005). 101.Ouyang, W., Li, J., Zhang, D., Jiang, B.H. & Huang, D.C. PI-3K/Akt signal pathway plays a crucial role in arsenite-induced cell proliferation of human keratinocytes through induction of cyclin D1. Journal of cellular biochemistry 101, 969-978 (2007). 102.Gartel, A.L. & Tyner, A.L. Transcriptional regulation of the p21WAF1/CIP1 gene. Experimental cell research 246, 280-289 (1999). 103.Liu, Z.M. & Huang, H.S. As2O3-induced c-Src/EGFR/ERK signaling is via Sp1 binding sites to stimulate p21WAF1/CIP1 expression in human epidermoid carcinoma A431 cells. Cellular signalling 18, 244-255 (2006). 104.Liu, Z.M. & Huang, H.S. Inhibitory role of TGIF in the As2O3-regulated p21 WAF1/CIP1 expression. Journal of biomedical science 15, 333-342 (2008). 105.Hirano, S., et al. Ultrahigh-vacuum reaction apparatus to study synchrotron-radiation-stimulated processes. Journal of synchrotron radiation 1, 1363-1368 (1998). 106.Kardassis, D., Papakosta, P., Pardali, K. & Moustakas, A. c-Jun transactivates the promoter of the human p21(WAF1/Cip1) gene by acting as a superactivator of the ubiquitous transcription factor Sp1. The Journal of biological chemistry 274, 29572-29581 (1999). 107.Chen, B.K. & Chang, W.C. Functional interaction between c-Jun and promoter factor Sp1 in epidermal growth factor-induced gene expression of human 12(S)-lipoxygenase. Proceedings of the National Academy of Sciences of the United States of America 97, 10406-10411 (2000). 108.Blaine, S.A., Wick, M., Dessev, C. & Nemenoff, R.A. Induction of cPLA2 in lung epithelial cells and non-small cell lung cancer is mediated by Sp1 and c-Jun. The Journal of biological chemistry 276, 42737-42743 (2001). 109.Hunter, T. & Karin, M. The regulation of transcription by phosphorylation. Cell 70, 375-387 (1992). 110.Goode, N., Hughes, K., WoodgettQ, J.R. & Parker, P.J. Differential Regulation of Glycogen Synthase Kinase-3P by Protein. The Journal of biological chemistry 267, 16878-16882 (1992). 111.Bannister, A.J., Gottlieb, T.M., Kouzarides, T. & Jackson, S.P. c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro; definition of the minimal kinase recognition motif. Nucleic acids research 21, 1289-1295 (1993). 112.Boyle, W.J., et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64, 573-584 (1991). 113.Lin, A., et al. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 70, 777-7789 (1992 ). 114.Wang, B., Zhang, P. & Wei, Q. Recent progress on the structure of Ser/Thr protein phosphatases. Science in China. Series C, Life sciences 51, 487-494 (2008). 115.Rossig, L., Badorff, C., Holzmann, Y., Zeiher, A.M. & Dimmeler, S. Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. The Journal of biological chemistry 277, 9684-9689 (2002). 116.Frame, S. & Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. The Biochemical journal 359, 1-16 (2001). 117.Fang, X., et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proceedings of the National Academy of Sciences of the United States of America 97, 11960-11965 (2000). 118.Sutherland, C. & Cohen, P. The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS letters 338, 37-42 (1994). 119.Vlahos, C.J., Matter, W.F., Hui, K.Y. & Brown, R.F. A specific inhibitor of phosphatidylinositol3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1- benzopyran-4-one (LY294002). The Journal of biological chemistry 269, 5241-5248 (1994).
|