跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林舒美
研究生(外文):Shu-Mei Lin
論文名稱:海水微藻抑制病原弧菌Vibrioalginolyticus增生之研究
論文名稱(外文):Inhibitory effects of marine microalgae on the multiplication of Vibrio alginolyticus
指導教授:冉繁華冉繁華引用關係
指導教授(外文):Fan-Hua Nan
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:111
中文關鍵詞:藻類弧菌抑制
外文關鍵詞:algaeVibrioinhibitory
相關次數:
  • 被引用被引用:13
  • 點閱點閱:1105
  • 評分評分:
  • 下載下載:154
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本論文的目的為探討水體中微藻與細菌之間的關係,進而了解微藻抑制病原菌生長之效果。本實驗利用五種海水微藻Skeletonema costatum、Chaetoceros muelleri、Tetraselmis chui、Nannochloropsis oculata與Isochrysis galbana的基礎生物特性:生長階段之指數期和細胞數與吸光值之間的關係,觀察微藻的活藻細胞及細胞內產物在不同濃度的環境中對於抑制病原性弧菌Vibrio alginolyticus生長的效果。
由生長曲線結果可得知,微藻細胞大小與指數生長期之最高細胞數呈現反比關係;此外,五種海水微藻的生長速率順序依次為N. oculata > I. galbana > C. muelleri > S. costatum > T. chui。
以微藻抑制V. alginolyticus生長之研究中,發現五種海水微藻在不同濃度之活藻細胞環境中皆有抑制V. alginolyticus生長之效果,其中以I. galbana、C. muelleri抑制效果最為顯著,可以達到完全抑制的效果;微藻之細胞內產物抑制V. alginolyticus生長之研究中,發現僅有S. costatum在不同濃度環境下皆能夠有效降低V. alginolyticus生長。
Abstract

The purpose of this study is investigated the relationship of algae and bacteria in the seawater, and also want to know the effect of microalgae inhibit bacterial or not. Five species of microalgae, Skeletonema costatum, Chaetoceros muelleri, Tetraselmis chui, Nannochloropsis oculata and Isochrysis galbana were used to study the inhibition of Vibrio alginolyticus growth with microalgae live cell and intracellular products in different concentrations, based on biological characteristic (log phase of growth curve and relationship of cell count and absorbance).
The size of microalgae showed that a negative correlation with the highest cell count in log phase, growth rate was found highest in N. oculata, follow by I. galbana, C. muelleri, S. costatum and T. chui, respectively. All species were found effectively depressed the growth of V. alginolyticus. Moreover, a completely inhibit of V. alginolyticus was found in I. galbana and C. muelleri. On the other hand, different concentrations of S. costatum can inhibit V. alginolyticus growth, only.
目錄

謝辭--------------------------------------------------------------------------------i
中文摘要-------------------------------------------------------------------------ii
英文摘要-------------------------------------------------------------------------iii
目錄-------------------------------------------------------------------------------iv
表目錄----------------------------------------------------------------------------v
圖目錄--------------------------------------------------------------------------viii
前言-------------------------------------------------------------------------------1
文獻整理-------------------------------------------------------------------------4
材料與方法---------------------------------------------------------------------16
結果------------------------------------------------------------------------------25
討論------------------------------------------------------------------------------39
結論------------------------------------------------------------------------------46
參考文獻------------------------------------------------------------------------48

表目錄

Table 1. f/2培養液配方(Guillard, 1975)----------------------------------63

Table 2. 添加不同濃度的等鞭金藻對Vibrio alginolyticus生長之影響-------------------------------------------------------------------------80

Table 3. 添加不同濃度的等鞭金藻之細胞內產物對Vibrio alginolyticus生長之影響----------------------------------------81

Table 4. 添加不同濃度的角刺藻對Vibrio alginolyticus生長之影響------------------------------------------------------------------------82

Table 5. 添加不同濃度的角刺藻之細胞內產物對Vibrio alginolyticus生長之影響---------------------------------------------------------83

Table 6. 添加不同濃度的骨藻對Vibrio alginolyticus生長之影響--84

Table 7. 添加不同濃度的骨藻之細胞內產物對Vibrio alginolyticus生長之影響-------------------------------------------------------------85

Table 8. 添加不同濃度的擬球藻對Vibrio alginolyticus生長之影響------------------------------------------------------------------------86

Table 9. 添加不同濃度的擬球藻之細胞內產物對Vibrio alginolyticus生長之影響---------------------------------------------------------87
Table 10. 添加不同濃度的扁藻對Vibrio alginolyticus生長之影響----------------------------------------------------------------------88

Table 11. 添加不同濃度的扁藻之細胞內產物對Vibrio alginolyticus生長之影響-------------------------------------------------------89

Table 12. 五種海水微藻在104 cell/ml下對Vibrio alginolyticus生長之影響-----------------------------------------------------------------90

Table 13. 五種海水微藻在105 cell/ml下對Vibrio alginolyticus生長之影響-----------------------------------------------------------------91

Table 14. 五種海水微藻在106 cell/ml下對Vibrio alginolyticus生長之影響-----------------------------------------------------------------92

Table 15. 比較各種海水微藻在活體環境下不同濃度之抑菌效果----------------------------------------------------------------------93

Table 16. 五種微藻之細胞內產物在104 cell/ml下對Vibrio alginolyticus生長之影響--------------------------------------94

Table 17. 五種微藻之細胞內產物在105 cell/ml下對Vibrio alginolyticus生長之影響--------------------------------------95

Table 18. 五種微藻之細胞內產物在106 cell/ml下對Vibrio alginolyticus生長之影響--------------------------------------96

Table 19. 比較各種海水微藻之細胞內產物在不同濃度下的抑菌效果-------------------------------------------------------------------97

Table 20. 描述在早期文獻中可抑制弧菌屬活性之海水微藻---------------------------------------------------------------------98

圖目錄

Figure 1. 骨藻------------------------------------------------------------------64

Figure 2. 牟氏角刺藻---------------------------------------------------------65

Figure 3. 東港等鞭金藻------------------------------------------------------66

Figure 4. 海洋擬球藻---------------------------------------------------------67

Figure 5. 周氏扁藻------------------------------------------------------------68

Figure 6. 可見光範圍---------------------------------------------------------69

Figure 7. 東港等鞭金藻之生長曲線---------------------------------------70

Figure 8. 牟氏角刺藻之生長曲線------------------------------------------71

Figure 9. 骨藻之生長曲線---------------------------------------------------72

Figure 10. 海洋擬球藻之生長曲線-----------------------------------------73

Figure 11. 周氏扁藻之生長曲線-------------------------------------------74

Figure 12. 等鞭金藻吸光值與細胞數之關係----------------------------75

Figure 13. 牟氏角刺藻吸光值與細胞數之關係-------------------------76

Figure 14. 骨藻吸光值與細胞數之關係----------------------------------77

Figure 15. 海洋擬球藻吸光值與細胞數之關係-------------------------78

Figure 16. 周氏扁藻吸光值與細胞數之關係----------------------------79

Figure 17. 添加不同濃度的等鞭金藻對Vibrio alginolyticus生長之影響-------------------------------------------------------------------80

Figure 18. 添加不同濃度的等鞭金藻之細胞內產物對Vibrio alginolyticus生長之影響-------------------------------------81

Figure 19. 添加不同濃度的角刺藻對Vibrio alginolyticus生長之影響----------------------------------------------------------------------82

Figure 20. 添加不同濃度的角刺藻之細胞內產物對Vibrio alginolyticus生長之影響-------------------------------------83

Figure 21. 添加不同濃度的骨藻對Vibrio alginolyticus生長之影響---------------------------------------------------------------------84

Figure 22. 添加不同濃度的骨藻之細胞內產物對Vibrio alginolyticus生長之影響------------------------------------------------------85


Figure 23. 添加不同濃度的擬球藻對Vibrio alginolyticus生長之影響----------------------------------------------------------------------86

Figure 24. 添加不同濃度的擬球藻之細胞內產物對Vibrio alginolyticus生長之影響-------------------------------------87

Figure 25. 添加不同濃度的扁藻對Vibrio alginolyticus生長之影響----------------------------------------------------------------------88

Figure 26. 添加不同濃度的扁藻之細胞內產物對Vibrio alginolyticus生長之影響-------------------------------------------------------89

Figure 27. 五種海水微藻在104 cell/ml下對Vibrio alginolyticus生長之影響-------------------------------------------------------------90

Figure 28. 五種海水微藻在105 cell/ml下對Vibrio alginolyticus生長之影響-------------------------------------------------------------91

Figure 29. 五種海水微藻在106 cell/ml下對Vibrio alginolyticus生長之影響-------------------------------------------------------------92

Figure 30. 五種海水微藻之細胞內產物在104 cell/ml下對Vibrio alginolyticus生長之影響--------------------------------------94

Figure 31. 五種海水微藻之細胞內產物在105 cell/ml下對Vibrio alginolyticus生長之影響--------------------------------------95

Figure 32. 五種海水微藻之細胞內產物在106 cell/ml下對Vibrio alginolyticus生長之影響--------------------------------------96
參考文獻

林燕輝,張富龍,林畢修平,藍啟仁,2001。利用板型光合反應器處理電廠排放之二氧化碳。工業安全衛生技術輔導成果發表會。
周廷耀,2003。碳源的添加對等鞭金藻增殖的影響。國立中山大學海洋生物研究所碩士學位論文。
教育部技職司,1991。餌料生物學概要。華香園出版社,pp. 228。
陳明耀,1997。生物餌料培養。水產出版社,pp. 329。
陳亮洲,2003。不同溫度及鹽度下溶藻弧菌對白蝦之致病性研究。國立台灣海洋大學水產養殖學系碩士學位論文。
陳亭汝,2004。假單胞菌細胞外產物中具抑制巴斯德桿菌物質之特性分析。國立台灣海洋大學水產養殖學系碩士學位論文。
張景盛,2003。益生菌對改善水質與抑制弧菌生長之影響。國立台灣海洋大學水產養殖學系碩士學位論文。
雷淇祥,蘇惠美,1985。草蝦苗以不同餌料餵飼時之生長及生存率。台灣水產學會刊 12:54-67。
楊盛行,張義宏,呂誌翼,洪瑛金英,藍啟仁,1999。篩選本土性微生物固定二氧化碳之研究。台灣電力綜合研究所研究計畫論文。
楊錫鑫,2004。九孔培育池底棲性矽藻之分類培養純化及其應用於九孔幼苗養殖之研究。國立台灣海洋大學水產養殖學系碩士學位論文。
趙文榮,曾金成,陶申秋,2002。餌料生物學(全)。格致圖書有限公司。
鄧達祺,1993。棘輻肛參(Actinopyga echinites)初期幼生飼育方法的研究。台灣大學漁業科學研究所碩士論文。
鄭金華,陳紫媖,蘇惠美,陳鏗元,黃美英,蘇茂森,廖一久,1998。台灣產巨牡蠣之種苗培育與單體牡蠣之幼發試驗。水產研究 6:25-33。
蘇惠美,雷淇祥,廖一久,1990。溫度、光照度及鹽度對骨藻生長速率之影響。臺灣水產學會刊 17:213-222。
蘇惠美,蘇茂森,廖一久,1995。極小型輪蟲之篩選及其培養條件。水產研究。
蘇惠美,1999。餌料生物之培養與利用。台灣省水產試驗所 東港分所出版。39-64。

Refernce:

Allen, E.J., Nelson, E.W., 1910. On the artificial culture of marine plankton organisms. J. Mar. Biol. Assoc. 8, 421-474.

Antia, N.J., Bisalputra, T., Cheng, J.Y., Kalley, J.P., 1975. Pigment and cytological evidence for reclassification of Nannochloropsis oculata and Monallantus salina in the Eustigmatophyceae. J. Phycol. 11, 339-343.

Asplund, K., Hakkinen, M., Bjorkroth, J., Nuotio, L., Nurmi, E., 1996. Note: inhibition of the growth of Yersinia enterocolitica O:3 by the microflora of porcine caecum and ileum in an in vitro model. J. Appl. Bacteriol. 81, 217-222.

Aubert, J., Gambarotta, J.P., 1972. Etude de l’action antibactérienne d’espèces phytoplanctoniques marines vis àvis de germes anérobies. Rev. Intern. Oceanogr. Med. XXV, 39-47.

Aubert, M., Aubert, J., Gauthier, M., 1968a. Pouvoir autoépurateur de l’eau de mer et substances antibiotiques produites par les organismes marins. Rev. Intern. Oceanogr. Med. X, 137-207.

Aubert, J., Pesando, D., Thouvenot, H., 1968b. Action antibiotique d’extraits planctoniques vis à vis de germes anaérobies. Rev. Intern. Oceanogr. Med. X, 259-265.

Aubert, M., Aubert, J., Gauthier, M., 1979. Antibiotic substances from marine flora. In: Hoppe, H.A., Levring T., Tanaka, Y. (eds.), Marine Algae in Pharmaceutical Science, pp. 275-291.

Austin, B., Austin, D.A, (eds.)., 1993. Bacterial Fish Pathogens: Disease in Farmed and Wild Fish, 2 nd ed. Elli Horwood Ltd, Chichester.

Austin, B., Day, J.G., 1990. Inhibition of prawn pathogenic Vibrio spp by a commercial spray-dried preparation of Tetraselmis suecica. Aquaculture 90, 389-392.

Austin, B., Baudet, E., Stobie, M., 1992. Inhibition of bacterial fish pathogens by Tetraselmis suecica. J. Fish. Dis. 15, 55-61.

Austin, B., Stuckey, L.F., Robertson, P.A.W., Effendi, I., Griffith, D.R.W., 1995. A probiotic strain of Vibrio anguillarum and Vibrio ordalii, J. Fish Dis. 18, 93-96.

Bajgus, A., Czerpak, R., 1998. Physiological and biochemical role of brassinosteroids and their structure activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). J. Plant Growth Reg. 17, 131-139.

Baumann, P., Schubert, R.H.W., 1984. Family II. Vibrioanceae. In: Bergey’s Manual of Systematic Bacteriology, Vol. 1. Krieg, N.R., Holt, J.G. (eds.). Williams and Wilkins, Batimore. pp. 516-538.

Bell, W., Mitchell, R., 1972. Chemotactic and growth response of marine bacteria to algal extracellular products. Biol. Bull. Mar. Biol. Lab., Woods Hole. 143, 402-407.

Bell, W.H., Land, J.M., Mitchell, R., 1974. Selective stimulation of marine bacteria by algal extracellular products. Limnol. Oceanogr. 19, 883-839.

Berland, B.R., Bonin, D.J., Cornu, A.L., Maestrini, S.Y., Marino, J.P., 1972. The antibacterial substances of the marine alga Stichochrysis immobilis (Chrysophyta). J. Phycol. 8, 383-392.

Brock, T.D., Clyne, J., 1984. Significance of algal excretory products for growth of epilimnetic bacteria. Appl. Environ. Microbiol. 47, 731-734.

Burke, J.A., Rodgers, L., 1981. Identification of pathogenic bacteria associated with the occurrence of red spot in sea mullet, Mugil cephalus L., in south-estern Queensland. J. Fish. Dis. 3, 153-159.

Cole, J.J., 1982. Interaction between bacteria and algae in aquatic ecosystems. Ann. Rev. Ecol. Syst. 13, 291-314.

Colorni, A., Paperna, I., Gordin, H., 1981. Bacterial infections in gilthead sea bream Saparus aurata cultured at Elat. Aquaculture 23, 257-267.

Colwell, R.R., Grimes, D.J., 1984. Vibrio disease of marine fish population. Dis. Mar. Org. 37, 265-287.

Cooper, S., Battat, A., Marot, P., Sylvester, M., 1983. Production of antibacterial activities by two Bacillariophyceae grown in dialysis culture. Can. J. Microbiol. 29, 338-341.

Coutteau, P., Sorgeloos, P., 1992. The use of algal substitute and the requirement for live algae in the hatchery and nursery of bivalve mollusks: an international survey. J. Shellfish Res. 11, 467-476.

Delucca, R., McCracken, M.O., 1978. Observations on interaction between naturally collected bacteria and several species of algae. Hydrobiologia 55,71-75.

Depauw, N., Pruder, G., 1981. Use and production of microalgae as food in aquaculture: practices, problems and research needs. In: M. Bilio, H. Rosenthal and C.J. Sindermann (eds.), Realism in Aquaculture: Achievements, Constraints, Perspectives. European Aquaculture Society, Bredene, Belgium. pp. 77-106.

Droop, M.R., Elson, G.R., 1966. Are pelagic diatioms free from bacteria? Nature, London. 221, 1096-1097.

Droop, M.R., Norris, J.R., Ribbon, S.W., 1969. Methods in microbiology3B. Academic Press. New York. pp. 269-313.

Duff, D.C.B., Bruce, D.L., Anita, N.J., 1966. The antibacterial activity of marine planktonic algae. Can. J. Microbial. 12, 877-884.

Egidius, E., 1987. Vibriosis: Pathogenicity and pathology. Aquaculture 67, 15-28.

Esteve, M., Herrera, F.C., 2000. Hepatopancreatic alterations in Litopenaeus vannamei (Boone, 1939)(Crustacea: Decapoda: Penaeidae) experimentally infected with a Vibrio alginolyticus strain. J. Invert. Pathol. 76, 1-5.

Findlay, J.A., Patil, A.D., 1984. Antibacterial constituents of the diatom NaÍicula delognei. J. Nat. Prod. 47, 815-818.

Galbraith, H., Miller, T.B., 1973a. Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J. Appl. Bact. 36, 635-646.

Galbraith, H., Miller, T.B., 1973b. Physiochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J. Appl. Bact. 36, 647-658.

Galbraith, H., Miller, T.B., 1973c. Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J. Appl. Bact. 36, 659-675.

Garriques, D., Arevalo, G., 1995. An evaluation of the production and use of a live bacterial I. galbanalate to manipulate the microbial flora in the commercial production of Penaeus vannamei postlarvae in Ecuador. En: Browdy, C.L., Hopkins, J.S (eds.) Swimming through troubled water. World Aquaculture Society, Baton Rouge, Lousiana, USA. pp. 53-59.

Gauthier, M.J., Bernard, P., Aubert, J., 1978. Production d’un antibiotique lipidique photo-sensible par la diatom marine Chaetoceros lauderi (RALFS). Ann. Microbiol. 129, 63-70.

Gauthier, M.J., 1980. Note sur la frèquence de la production d’antibiotiques lipidiques chez les algues planctoniques. Rev. Intern at Oceanogr. Med. LVIII, 41-44.

Girones, R., Jofre, J.T., Bossch, A., 1989. I. galbanalation of marine bacteria with antiviral properties. Can. J. Microbiol. 35, 1015-1021.

Green, J.C., Pienaar, R.N., 1977. The taxonomy of the order sochrysidales (Prymnesiophyceae) with special reference to the genera Isochrysis parke, Dicrateria parke and Imantonia Reynolds. J Mar. Biol. Assoc. U. K. 57, 7-17.

Grimes, D.J., Singleton, F.L., Colwell, R.R., 1984. Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J. Appl. Bact. 57, 247-261.

Guillard, R.L., 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith, N.L., Chanley, M.H. (eds.). Culture of marine invertebrate animals. Plenum, New York. pp. 29-60

Harker, M., Tsavalos, A.J., Young, A.J., 1996. Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55, 207-214.

Helm, M.M., Laing, I., 1987. Preliminary observations on the nutrient value of “Tahiti ssochrysis” to bivalve larvae. Aquaculture 62, 281-288.

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T., 1994. In: Bergey’s mannual of Determinative Bacteriology, 9th ed. Williams and Wilkins, Baltimore. pp.192-289.

Hori, T., 1991. The ultrastructure of the flagellar root system of Isochrysis galbana (Prymnesiophyta). J. Mar. Biol. Assoc. U. K. 71, 137-152.

Huang, R., Chiang, Y.M., Hung, T.C., 1986. On the distribution of the planktonic diatom Skeletonema costatum (Grev.) Cleve in the waters around Taiwan. Acta. Oceanogr. Taiwanica. 16, 117-127.

Imada, N., Kobayashi, K., Isdmura, K., Saito, H., Imura, S., Tahara, K., Oshima, Y., 1992. I. galbanalation and identification of an autoinhibitor produced by Skeletonema costatum. Nippon. Suisan. Gakk. 58, 1687-1692.

Ingrid, S., Kjell, I., Jorunn, S., Gunvor Ø., 2000. Microbial environments in marine larviculture: impact of algal growth rates on the bacterial load in six microalgae. Aquaculture Internat. 8, 275-287.

Iwata, K., Inayama, T., Kato, T., 1990. Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J. Nutr. Sci. Vitaminol. 36, 165-171.

Jams, R., 1996. The biology of E group colicins: paradigms and paradoxes. Microbiolgy 142, 1569-1580.

Jones, D.A., Kurmaly, K., Arshard, A., 1987. Paneid shrimp hatchery trials using microencapsulated diets. Aquaculture 64, 133-164.

Kanavillil, N., Hideki, O., Tatsuya, S., Toshihiko, O., Akihiro, U., Tetsuo, Y., 2003. Pulsed laser irradiation impact on two marine diatoms Skeletonema costatum and Chaetoceros gracilis. Water Res. 37, 2311-2316.

Kato, T., Takemoto, K., Katayama, H., Kuwabara, Y., 1984. Effects of Spirulina (Splirulina platensis) on dietary hypercholesterolemia in rats. J. Jap. Soc. Nutr. Food Sci. 37, 323-332.

Kellam, S.J., Cannell, R.J.P., Owsianka, A.M., Walker, J.M., 1988. Results of a large scale screening programme to detect antifungical activity from marine and freshwater microalgae in laboratory culture. Brit. Phycol. J. 23, 45-47.

Kellam, S.J., Walker, J.M., 1989. Antibacterial activity from marine microalgae in laboratory culture. Brit. Phycol. J. 24, 191-914.

Kogure, K., Simidu, U., Taga, N., 1979. Effect of Skeletonema costatum (Grev.) Cleve on the growth of marine bacteria. J. Exp. Biol. Ecol. 36, 201-215.

Lau, P.S., Tam, N.F.Y., Wong, Y.S., 1998. Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresour. Technol. 63, 115-121.

Lee, K.K., 1995. Pathogensis studies on pathogenicity of Vibrio damsela I. galbanalated from diseased tiger prawn (Penaeus monodon). Fish. Dis. Res. 15, 21-36.

Lee, Y.K., Soh, C.W., 1991, Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J. Phycol. 27, 575-577.

Liao, I.C., Chao, N.H., 1983. Development of prawn culture and its related studies in Taiwan. In: Rogers, G.L., Day, R., Lim, A. (eds.), Proceedings of the International Warm Water Aquaculture Conference 1983(Crustaceans). Bringhum Young University, Hawaii Compus, Laie, H. I. pp. 129-142.

Liu, P.C., Lee, K.K., Chen, S.N., 1996. Pathogenicity of different I. galbanalates of Vibrio hareyi in tiger prawn (Penaeus monodon). Lett App. Microbiol. 22, 413-416.

Maeda, M., Liao, I.C., 1994. Effect of bacterial population on the growth of a prawn larva, Penaeus monodon. Bull. Natl. Res. Inst. Aquaculture 21, 25-29.

Mann, D.G., Hoek, V.D.C., Jahns, H.M., 1998. Algae: An introduction to phycology. Cambridge University Press. pp. 219-234.

Miki, W., 1991, Biological function and activity of animal carotenoids, Pure. Appl. Chem. 63, 141-146.

Nakaya, N., Homma, Y., Goto, Y., 1988. Cholesterol lowering effect of Spirulina. Nutr. Rep. Int. 37, 1329-1337.

Naviner, M., Bergé, J.P., Durand, P., Bris, L.H., 1999. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174, 15-24.

Nieman, C., 1954. Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol. Rev. 18, 147-163.

Nogami, K., Maeda, M., 1992. Bacterial as biocontrol agents for rearing larvae of the crab Portunts trituberculatus. Can. J. Fish. Aquacult. Soc. 49, 2373-2376.

Nottage, A.S., Birkbeck, T.H., 1987. Production of proteinase during experimental infection of Ostres edulis L. larvae with Vibrio alginolyticus NCMB 1339 and the antigenic relationship between proteinase produced by marine vibrios pathogenic for fish and shellfish. J. Fish. Dis. 10, 265-273.

Patrick, R., Reimer, C.W., 1966. Introduction. The diatoms of the United States Vol. 1. Academy of National Sciences. Pennsylvania. pp. 688.

Pesando, D., 1985. Etude des propriétés antifongiques et antibactériennes d’algues marines. I. galbanalement, étude chimique et activitéd’un polysaccharide et d’un glycolipide extraits de deux diatomées: Chaetoceros lauderi (Ralfs) et Asterionella japonica (Cleve). Thèse de Doctorat. Université Pierre et Marie Curie, Paris VI. pp. 136.

Pesando, D., 1990. Antibacterial and antifungal activities of marine algae. In: Akatsuka, I. (eds.). Introduction to Applied Phycology. pp. 3-26.

Pfitzer, E., 1871. Untersuchungen u¨ber Bau und Entwicklung der Bacillriaceen. Botanische Abhandlungen aus dem Gebiet der orphologie und Physiologie. Heft 2, Bonn. pp.183.

Reitan, K.I., Rainuzzo, J.R., Olsen, Y., 1994. Effect of nutrient limitation on fatty acid and lipid contents of marine microalgae. J. Phycol. 30, 972-979.

Rico-Mora, R., Voltolina, D., Villaescusa-Celaya J.A., 1998. Biological control of Vibrio alginolyticus in Skeletonema costatum (Bacillariophyceae) cultures. Aquac. Eng. 19, 1-6.

Riquelme, C.E., Fukami, K., Ishida, Y., 1988. Effect of bacteria on the growth of a marine diatom. Bull. Japan. Soc. Microb. Ecol. 3, 29-34.

Roxana, R., Domentico, V., Julio, A.V.C., 1998. Biological control of Vibrio alginolyticus in Skeletonema costatum (Bacillariophyceae) cultures. Aquac. Eng. 19, 1-6.

Salvesen, I., Reitan, K.I., Skjermo, J., Øie, G., 2000. Microbial environments in marine larviculture: impacts of algal growth rates on the bacterial load in six microalgae. Aquaculture Internat. 8, 275-287.

Salvesen, I., Skjermo, J., Vadstein, O., 1999. Growth of turbot (Scophthalmus maximusl.) during first feeding in relation to the proportion of r/K-strategists in the bacterial community of the rearing water. Aquaculture 175, 337-350.

Schütt, F., 1896. Bacillariales (Diatomeae). In: Engler, A., Prantl, K.(eds.) Die naturlichen Pflanzenfamilien", 1st edition, Teil 1, Abt. b. Leipzig. pp. 31-150.

Sieburth, J.M.N., 1968. The influence of algal antibiosis on the ecology of marine microorganisms. In: Advances in microbiology of the sea, edited by Droop, M.R., Wood, E.J.F., Academic Press, London. pp. 63-94.

Simidu, U., Kaneko, E., Taga, N., 1977. Microbiological studies of Tokyo Bay. Microb. Ecol. 3, 173-191.

Skjermo, J., Vadstein, O., 1993. The effect of microalgae on skin and gut bacterial flora of halibut larvae. In: Reinertsen, H., Dahle, L.A., Jørgensen, L., Tvinnereim, K. (eds.), Fish Farm Technology, A.A. Balkema, Rotterdam, Netherlands. pp. 61-67.

Su, H.M., Su, M.S., Liao, I.C., 1997a. Collection and culture of live foods for aquaculture in Taiwan. Hydrobiology 358, 37-40.

Su, H.M., Su, M.S., Liao, I.C., 1997b. Preliminary results of providing various combinations of live foods to grouper (Epinephelus coiodes) larvae. Hydrobiology 358, 301-304.

Tam, N.F.Y., Wong, Y.S., 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 57, 45-50.

Tanaka, K., Konishi, F., Himeno, K., Taniguchi, K., Nomoto, K., 1984. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella wvulgaris. Cancer Immunol. Immunother. 17, 90-94.

Tubiash, H.S., Chanley, P.E., Leifson, E., 1965. Bacillary necrosis, a disease of larval and juvenile bivalve mollusks. l. Etiology an Epizootiology. J. Bacteriol. 90, 1036-1044.

Visco, A.C., Pesando, D., Baby, C., 1987. Antibacterial and antifungal properties of some marine diatoms. Bot. Mar. 30, 41-45.

Waksman, S.A., Stokes, J.L., Butler, M.R., 1938. Relation of bacteria to diatoms in sea water. J. Mar. Biol. Assoc. U. K. 22, 359-373.

Watanabe, T., Kiron, V., 1994. Prospects in larval dietetics. Aquaculture 124, 223-251.

Yang, S.S., Chang, E.H., Wei, C.B., Horng, Y.Y., Lan, C.R., 1999. Carbon Dioxide Fixation of Cyanobacteria and Microalgae in Taiwan. International conference on cleaner production and sustainable Development '99.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top