跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林展逸
研究生(外文):Zhan-Yi Lin
論文名稱:高性能光收發模組之研製與應用於40Gb/s雙向低密度分波多工被動光網路系統
論文名稱(外文):Design and Fabrication of High Performance Optical Transceiver Apply to a 40Gb/s Bidirectional CWDM-PON System
指導教授:施天從
指導教授(外文):Tien-Tsorng Shih
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:116
中文關鍵詞:光收發模組低密度分波多工被動光網路
外文關鍵詞:Optical transceiverCWDM-PON
相關次數:
  • 被引用被引用:0
  • 點閱點閱:709
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中以電致吸收調變雷射(Electro Absorption Modulated Laser, EML)及累增崩潰光電二極體(Avalanche Photo-Diode, APD),設計與製作出ㄧ傳輸速率達10Gb/s之高性能光收發模組,並可適用於光纖到家(Fiber To The Home, FTTH)服務之接取網路架構上。光接收模組製作部分,順利完成一具有資料與時脈回復(Clock and Data Recovery, CDR)功能之接收模組,接收靈敏度可達-25.76dBm,相較於PIN光電二極體(p-i-n photodiode, PIN-PD)增加了8dB左右。光發射模組製作部分,由於EML特性不佳及電致吸收調變器驅動電路之直流電壓輸出無法滿足需求等兩個問題,所以僅完成設計與製作,無法進行傳輸量測。同時將製作完成之接收模組應用於一40Gb/s低密度分波多工被動光網路(Coarse Wavelength Division Multiplexing Passive Optical Network, CWDM-PON)系統進行量測。此系統是將具有10Gb/s傳輸速率之四個通道,以分波多工技術匯入於單一光纖中傳輸,成為一總傳輸容量達40Gb/s之接取網路架構。經過20公里單模光纖之系統架構傳輸後,上傳傳輸各通道接收靈敏度為-17.68dBm~-18.73dBm,下載傳輸各為-22.01dBm~-22.64 dBm。配合系統末端之輸出光功率和接收靈敏度可計算出,上傳傳輸各通道至少有7.76dB以上的功率預算值,下載傳輸則為10dB以上;藉由功率預算值估算,系統之各通道可實現1:4之被動光網路架構,整個系統將可達到1:16的分流網路。
In this thesis, we designed and fabricated a high performance optical transceiver by adopting electro-absorption modulated laser (EML) and avalanche photodiode (APD). The data rate of the transceiver was up to 10Gb/s, which could apply to the optical access network (OAN) for the fiber to the home (FTTH) services. For the part of optical receiver, we successfully fabricated a receiver with the function of clock and data recovery (CDR), which the sensitivity reached to -25.76dBm and increase of about 8dB than the p-i-n photodiode (PIN-PD). The transmitter couldn’t work normally, that was due to the poor EML characteristic and the improper voltage from the EML driving circuit. Therefore, we accomplished only design and fabrication without testing transmission performance in this thesis. The receiver was applied to the transmission experiment for a 40Gb/s bidirectional coarse wavelength division multiplexing passive optical network (CWDM-PON) system. This system was an aggregated bit rate of 40Gb/s by combining four different-wavelength channels of 10Gb/s on a single mode fiber (SMF). After 20km SMF transmission, the sensitivities of upstream and downstream signal were distributed at -17.68 to -18.73 dBm and -22.01 to -22.64dBm, respectively. We calculated the power budget by the output power and the sensitivity, which were over 7.76dB for every upstream channel and 10dB for every downstream channel. By the calculation data of power budgets, 7.76dB could support four splitting optical networks. Therefore, the total splitting ratio could reach 1:16 on this CWDM-PON system.
中文摘要 --------------------------------------------------------------------------- I
英文摘要 --------------------------------------------------------------------------- III
誌謝 --------------------------------------------------------------------------- V
目錄 --------------------------------------------------------------------------- VI
圖目錄 --------------------------------------------------------------------------- VIII
表目錄 --------------------------------------------------------------------------- XII
一、 緒論--------------------------------------------------------------------- 1
1.1 研究動機--------------------------------------------------------------- 1
1.2 研究背景--------------------------------------------------------------- 2
1.3 論文架構--------------------------------------------------------------- 5
二、 研究背景簡介--------------------------------------------------------- 6
2.1 被動光網路(PON) --------------------------------------------------- 6
2.2 光纖色散特性--------------------------------------------------------- 13
2.3 10Gb/s光收發模組發展現況--------------------------------------- 16
2.4 抖動與資料時脈回復------------------------------------------------ 19
2.5 光發射次組裝模組簡介--------------------------------------------- 21
2.5.1 半導體雷射物理特性------------------------------------------------ 20
2.5.2 雷射操作特性與高速調變原理------------------------------------ 23
2.5.3 EML工作原理簡介-------------------------------------------------- 27
2.6 光接收次組裝模組--------------------------------------------------- 29
2.6.1 光電二極體特性分析------------------------------------------------ 29
2.6.2 光電二極體物理特性------------------------------------------------ 32
2.6.3 光電二極體與轉阻放大器之操作特性-------------------------- 35
三、 光收發模組電路設計與結果--------------------------------------- 37
3.1 光發射模組功能分析------------------------------------------------ 38
3.1.1 光發射次模組(TOSA)之特性分析-------------------------------- 38
3.1.2 MAX3941之特性分析----------------------------------------------- 39
3.2 光接收模組功能分析------------------------------------------------ 41
3.2.1 光接收次模組(ROSA)特性分析----------------------------------- 42
3.2.2 MAX3971A特性分析------------------------------------------------ 42
3.2.3 MAX3991特性分析-------------------------------------------------- 45
3.3 光收發電路設計------------------------------------------------------ 47
3.3.1 介面電路--------------------------------------------------------------- 47
3.3.2 光發射模組電路設計------------------------------------------------ 48
3.3.3 光接收模組電路設計------------------------------------------------ 49
3.4 高速印刷電路板佈局分析與設計--------------------------------- 52
3.4.1 高頻傳輸線設計技巧------------------------------------------------ 52
3.4.2 印刷電路板佈局技巧------------------------------------------------ 54
3.4.3 光發射電路佈局圖及完成之實體圖------------------------------ 56
3.4.4 光接收電路佈局圖及完成之實體圖------------------------------ 58
3.5 光收發模組電路特性量測與結果--------------------------------- 60
3.5.1 光發射模組量測結果------------------------------------------------ 60
3.5.2 光接收模組量測結果------------------------------------------------ 63
3.6 結果與討論------------------------------------------------------------ 69
四、 高速並列式雙向光傳輸系統架構與實驗結果------------------ 71
4.1 功率代價計算與模擬------------------------------------------------ 71
4.1.1 功率代價之起因------------------------------------------------------ 71
4.1.2 1.3μm直調架構功率代價計算------------------------------------- 74
4.1.3 1.5μm外調架構功率代價模擬------------------------------------- 78
4.2 40Gb/s 低密度分波多工被動光網路實驗架構----------------- 81
4.3 1.3um DFB雷射特性量測------------------------------------------ 84
4.4 低密度分波多工被動光網路傳輸實驗與量測結果------------ 87
4.4.1 上傳1.3µm光源之眼圖量測結果--------------------------------- 87
4.4.2 上傳1.3µm光源之誤碼率量測結果------------------------------ 90
4.4.3 下載1.5µm光源之眼圖量測結果--------------------------------- 92
4.4.4 下載1.5µm光源之誤碼率量測結果------------------------------ 95
4.5 結果與討論------------------------------------------------------------ 97
五、 結論與未來發展------------------------------------------------------ 102
5.1 結論--------------------------------------------------------------------- 102
5.2 未來發展--------------------------------------------------------------- 103
參考文獻 --------------------------------------------------------------------------- 104
附錄A 專有名詞索引--------------------------------------------------------- 108
附錄B 符號代號索引--------------------------------------------------------- 114
[1] Govind P. Agrawal, “Fiber-Optic Communication Systems”, John Wiley, 1997.
[2] 曾泰富, “具有特殊光侷限層的10Gb/s FP雷射模組”, 國立高雄應用科技大學光電與通訊所, 2006
[3] 曾培豪, “10Gb/s單纖雙向光收發模組研製”, 國立高雄應用科技大學光電與通訊所, 2007
[4] 吳泰葦, “用於光纖到家的40Gb/s低密度分波多工被動光網路光通訊系統”,國立高雄應用科技大學電子工程所, 2008
[5] Raúl Sananes, Carlos Bock, and Josep Prat, “Techno-Economic Comparison of Optical Access Networks”, Vol.2, pp.201-204, July 2005.
[6] William Yue, and Joseph V. Mocerino, “Broadband Access Technologies for FTTx Deployment”, IEEE Network Technologies, pp.25-29, March 2007.
[7] Ichirou Yamashita, “The Latest FTTH Technologies for Full Service Access Networks”, IEEE APCAS., pp.263-268, Nov. 1996.
[8] M. 0. Vogel, and R.C. Menendez, “FIBER-TO-THE-CURB SYSTEMS: ARCH- ITECTURE EVOLUTION”, Vol.1, pp.125-130, Dec. 1990.
[9] LUO Rui, NING Ti-gang, LI Tang-jun, CAI Li-bo, QIU Feng, JIAN Shui-sheng, and XU Jing-jing, “FTTH-A Promisinrr Broadband Technology”, IEEE ICCCAS, Vol.1, pp. 609-612, May 2005.
[10] Ian R. Cooper and Mick A. Bramhall, “ATM passive optical networks and integrated VDSL”, IEEE Communications Magazine, vol.38, pp.174-179, Mar 2000.
[11] Sattar Hussain and Xavier Fernando, “EPON: AN EXTENSIVE REVIEW FOR UP-TO-DATE DYNAMIC BANDWIDTH ALLOCATION SCHEMES”, IEEE CCECE, pp.511-516, May 2008.
[12] Ming-Fang Huang, Jianjun Yu, Hung-Chang Chien, Arshad Chowdhury, Jason Chen, Sien Chi, and Gee-Kung Chang, “A Simple WDM-PON Architecture to Simultaneously Provide Triple-play Services by Using One Single Modulator”, IEEE OFC.2008, pp.24-28, Feb 2008.
[13] 原榮,鄔文傑,陳積德,宋馭民,劉正瑜, “光纖通訊系統原理與應用”, 新文京開發出版股份有限公司
[14] www.300pinmsa.org
[15] www.xenpak.org
[16] www.xpak.org
[17] www.xfpmsa.org
[18] Ramana P.V., Kuruveettil H., Pong B.L.S., Suzuki K., Shioda T., Tan Chee Wei, Chandrappan J., Lim Teck Guan, Liang C.T.W, “Bi-Directional Optical Commu- nication at 10 Gb/s on FR4 PCB Using Reflow Solderable SMT Transceiver”, IEEE ECTC, pp.244-249, May 2008.
[19] A. Kanda, A. Ohki, Y. Suzuki and Y. Akatsu, “10 Gbit/s small form factor optical transceiver for 40km WDM transmission”, ELECTRONICS LETTERS 15th, Vol. 40, No. 8, April 2004.
[20] Agilent Technologies Jitter analysis: The Dual-Dirac Model, RJ/DJ, and Q-Scale White Paper [Online]. Available: www. Agilent.com
[21] Application Note: “An Introduction to Jitter in Communications Systems”, Maxim Integrated Products, 2005.
[22] Jie Sun, Mike Li, and Jan Wilstrup, “A Demonstration of Deterministic Jitter (DJ) Deconvolution”, IEEE Instrumentation and Measurement Technology Conferen- ce, vol.1, pp.293-298, 2002.
[23] Hyun Park, Kang Wook Kim, Sang-Kyu Lim, and Jesoo Ko, “A 40 Gb/s Clock and Data Recovery Module with Improved Phase-Locked Loop Circuits”, ETRI Journal, Vol.30, No.2, April 2008.
[24] 賴柏洲,“光纖通信與網路技術”, 全華科技圖書股份有限公司, 2003
[25] 祁子年, “光纖通訊基礎簡介”, 安捷倫科技
[26] Dr. Chun-Nan Chen & Dr. Joseph C. Palais, “光纖通信與應用”, 新文京開發出版股份有限公司, 2005.
[27] K. Petermann, “Laser Diode Modulation and Noise”, Kluwer Academic Publish- ers, pp.328, July 1988.
[28] H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, and H. Wada, “EAM-Integrated DFB Laser Modules with More Than 40-GHz Bandwidth”, IEEE Photon. Technol. Lett., vol.13, pp.954-956, Sep. 2001.
[29] D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, and T.H. Wood, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures”, Phys. Rev., Vol.32, pp.1043-1060, July 1985.
[30] Yasunori Miyazaki, TakeshinYamatoya, Keisuke Matsumoto, Kyosuke Kuramoto, Kimitaka Shibata, Toshitaka Aoyagi, and Takahide Ishikawa, “High-Power Ultralow-Chirp 10-Gbs Electroabsorption Modulator Integrated Laser with Ultrashort Photocarrier Lifetime”, IEEE Journal of Quantum Electronics, Vol.42, No.4, April 2006.
[31] Data Sheet: “1625/26-Series XMD MSA-compatible 10 Gb/s Cooled EML TOS- A”, Cyoptics, 2008.
[32] Data Sheet: “MAXIM 10Gbps EAM Driver with Integrated Bias Network”, MAXIM-IC, 2003.
[33] Data Sheet: “R195A 10 Gb/s Small Form-Factor Co-Planar APD-TIA Receiver”, Cyoptics, 2006.
[34] Data Sheet: “MAXIM +3.3V, 10.7Gbps Limiting Amplifier”, MAXIM-IC, 2002.
[35] Data Sheet: “MAXIM 10Gbps Clock and Data Recovery with Limiting Amplifier”, MAXIM-IC, 2002.
[36] Design Note: “Introduction to LVDS, PECL, and CML”, MAXIM HFAN-1.0.
[37] Design Note: “Choosing AC-Coupling Capacitors”, MAXIM HFAN-1.1.
[38] 白中和, “電磁雜訊問題與對策技術”, 全華科技圖書股份有限公司, 1999.
[39] 謝金明, “高速數位電路設計暨雜訊防制技術”, 全華科技圖書股份有限公司, 2003
[40] Pey-Kee and Makino T, “Effects of laser diode parameters on power penalty in 10 Gbps optical fiber transmission systems”, Journal of Lightwave Technology, Vol.15, NO.9, September 1997.
[41] Data Sheet: “Corning SMF-28e™ Optical Fiber”, Corning, 2001
[42] SHUY AMAMOTO, “Analysis of Chirp Power Penalty in 1.55um DFB-LD High-speed Optical Fiber Transmission Systems”, Journal of Lightwave Technology, Vol.5, No.10, October 1987.
[43] Tamotsu KIMURA, Tomoyuki OHSHIMA, Masanori TSUNOTANI, Toshihiko ICHIOKA and Shohei SEKI, “GaAs pHEMT Technology for Optical Communication System”, GaAsMANTECH Conference, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top