資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(216.73.216.11) 您好!臺灣時間:2025/09/24 10:14
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
張嘉晏
研究生(外文):
Chia-yen Chang
論文名稱:
長鞭效應的因應對策—以代工業為例
論文名稱(外文):
The Strategies to Counter the Bullwhip Effect: OEM/ODM asan Example
指導教授:
葉焜煌
學位類別:
碩士
校院名稱:
大同大學
系所名稱:
事業經營學系(所)
學門:
商業及管理學門
學類:
企業管理學類
論文種類:
學術論文
論文出版年:
2004
畢業學年度:
93
語文別:
英文
論文頁數:
88
中文關鍵詞:
存貨管理
、
供應鏈
、
長鞭效應
、
代工業
外文關鍵詞:
bullwhip effect
、
inventory management
、
OEM/ODM
、
supply chains
相關次數:
被引用:
16
點閱:722
評分:
下載:169
書目收藏:4
供應鏈通常涉及許多公司,每一家公司為了供應其下游顧客的需要,均有賴
於其他公司之原物料、零組件或服務的供應。由於公司一般均是獨立自主經營,
供應鏈下游端成員的行動,可能對上游端成員的營運造成不利的影響。在供應鏈
中,當需求訂單的變動幅度,由下游成員往上游成員擴大的現象發生時,稱之為
長鞭效應。長鞭效應普遍發生在各製造產業的供應鏈當中,當下游成員向上游成
員下訂單後,上游成員將此訊息視為是未來的產品需求,因而據此調整其需求預
測,進而向其上游供應商下訂單。使得在供應鏈的成員當中,愈是上游的廠商所
承受的訂單變異愈大,受害也就越大。供應鏈下游端成員至上游端成員的資訊扭
曲,可能造成供應鏈極度缺乏效率包括:不正確的產品需求預測、庫存的堆積、
因缺貨或延遲供貨導致顧客服務不佳、誤導產能規劃與錯誤的生產排程。
要解決長鞭效應帶來的負面影響,首先必須徹底瞭解其成因,進而才能採取
有效的對策。依學者的探討,造成長鞭效應的原因包括:需求預測更新、批量訂
單、價格波動、以及配給與短缺賽局。本研究以OEM/ODM 製造廠商為實證研究
對象,實證資料將以問卷收集並以層級分析法(AHP)進行分析,由實證瞭解造成
長鞭效應的這些因素之相對重要性,以提出具體之建議以供業界改善長鞭效應的
參考。
研究結果顯示:(1)大家普遍認為產生長鞭效應之主要成因是需求預測問
題,再者就是價格波動難以掌控,進而造成需求的不穩定。(2)當樣本區隔為大
廠商及中小貿易廠商時,則大廠商相較於其他因素,較重視價格波動的這項因
素;然而,中小企業廠商卻較在意需求預測問題。
Supply chains often involve linkages among many firms. Each firm depends on
other firms for materials, components, services, and information needed to supply its immediate customer in the chain. Because firms typically are owned and managed independently, the actions of downstream members (toward the ultimate user of the product or service) of the supply chain can adversely affect the operations of upstream members (toward the lowest tier in the supply chain). Minor disturbances in end demand can translate into huge disturbances at upstream suppliers. These dynamics are often referred as the bullwhip effect. This bullwhip effect has traditionally been accepted as an inevitable part of doing business in the electronics industry. The bullwhip effect occurs when demand order variabilities in the supply chain are amplified as they moved up the supply chain. Distorted information from one end of a supply chain to the other can lead to tremendous inefficiencies, including: poor product forecasts, piles of inventory, poor customer service due to unavailable
products or long backlog, misguided capacity plans, and missed production schedules.
Bullwhip effect exists in every manufacturing industry. When a downstream operation places an order, the upstream manager processes that piece of information as a signal about future product demand. Based on this signal, the upstream manager readjusts his or her demand forecasts and, in turn, the orders placed with the suppliers of the upstream operation. Therefore, the orders placed by the more upstream entity in the supply chain have much greater variability. Distorted information has led every entity in the supply chain to stockpile because of the high degree of demand uncertainties and variabilities.
Companies can effectively counteract the bullwhip effect by thoroughly understanding its underlying causes. Therefore, the purposes of this study are: First, to explore the causes of bullwhip effect and countermeasures by literature review. Second, using empirical study to verify the relative importance of factors causing the bullwhip effect and countermeasures. Third, based on the result of literature review and empirical study, this study will poses solid suggestions to the manufacturers for improving the bullwhip effect in their supply chain.
The causes of the bullwhip effect identified by authors include: demand
forecast updating, order batching, price fluctuation, and rationing and shortage
gaming. This study will use OEM/ODM manufacturers as empirical research subjects.
The empirical data will collect by using a mail questionnaire and will be analyzed by using AHP (Analytical Hierarchical Process Method).
Along with the globalization, enterprise must collaborate with the supply chain
network partners. So it is a necessary element for survival to well operate in the supply chain to quickly get in touch with the market, to decline the inventory risk and cost presses and to quick response. In order to satisfy the consumer requirement, promise to fulfill all orders on time, quickly respond the market, avoid the lack of materials or insufficient capability. Improving the bullwhip effect of the supply chain,the Vendor Managed Inventory (VMI) is the best method. It can share the inventory information with vendor and purchaser to manage the customer’s inventory level.
iii
Supply chains often involve linkages among many firms. Each firm depends on
other firms for materials, components, services, and information needed to supply its
immediate customer in the chain. Because firms typically are owned and managed
independently, the actions of downstream members (toward the ultimate user of the
product or service) of the supply chain can adversely affect the operations of upstream
members (toward the lowest tier in the supply chain). Minor disturbances in end
demand can translate into huge disturbances at upstream suppliers. These dynamics
are often referred as the bullwhip effect. This bullwhip effect has traditionally been
iv
accepted as an inevitable part of doing business in the electronics industry. The
bullwhip effect occurs when demand order variabilities in the supply chain are
amplified as they moved up the supply chain. Distorted information from one end of a
supply chain to the other can lead to tremendous inefficiencies, including: poor
product forecasts, piles of inventory, poor customer service due to unavailable
products or long backlog, misguided capacity plans, and missed production schedules.
Bullwhip effect exists in every manufacturing industry. When a downstream operation
places an order, the upstream manager processes that piece of information as a signal
about future product demand. Based on this signal, the upstream manager readjusts
his or her demand forecasts and, in turn, the orders placed with the suppliers of the
upstream operation. Therefore, the orders placed by the more upstream entity in the
supply chain have much greater variability. Distorted information has led every entity
in the supply chain to stockpile because of the high degree of demand uncertainties
and variabilities.
Companies can effectively counteract the bullwhip effect by thoroughly
understanding its underlying causes. Therefore, the purposes of this study are: First, to
explore the causes of bullwhip effect and countermeasures by literature review.
Second, using empirical study to verify the relative importance of factors causing the
bullwhip effect and countermeasures. Third, based on the result of literature review
and empirical study, this study will poses solid suggestions to the manufacturers for
improving the bullwhip effect in their supply chain.
The causes of the bullwhip effect identified by authors include: demand
forecast updating, order batching, price fluctuation, and rationing and shortage
gaming. This study will use OEM/ODM manufacturers as empirical research subjects.
The empirical data will collect by using a mail questionnaire and will be analyzed by
using AHP (Analytical Hierarchical Process Method).
Along with the globalization, enterprise must collaborate with the supply chain
network partners. So it is a necessary element for survival to well operate in the
supply chain to quickly get in touch with the market, to decline the inventory risk and
cost presses and to quick response. In order to satisfy the consumer requirement,
promise to fulfill all orders on time, quickly respond the market, avoid the lack of
materials or insufficient capability. Improving the bullwhip effect of the supply chain,
the Vendor Managed Inventory (VMI) is the best method. It can share the inventory
information with vendor and purchaser to manage the customer’s inventory level.
Baljko, Jennifer L. “Expert Warns of Bullwhip Effect,” Electronic Buyers’ News (July
26, 1999): PG5-PG6.
Buzzell, R. D., J. A. Quelch, and W. J. Salmon. "The Costly Bargain of Trade
Promotion." Harvard Business Review 68 (March-April 1990): 141-148.
Davis, Tom. "Effective Supply Chain Management." Sloan Management Review
(summer 1993): 35-46.
Dejonckheere, J., S. M. Disney, M. R. Lambrecht, and D. R. Towill. “Measuring and
Avoiding the Bullwhip Effect: A Control Theoretic Approach.” European
Journal of Operational Research 147, no. 3 (June 16, 2003): 567-590.
Donovan, R. Michael. ”Supply Chain Management: Cracking the Bullwhip Effect.”
Material Handling Management 57, no. 10 (2002/2003): A44-A45.
Fransoo, Jan C., and Marc J. F. Wouters. “Measuring the Bullwhip Effect in the
Supply Chain.” Supply Chain Management 5, no. 2, (2000): 78-82.
Greek, Dinah. “Whip Hand.” Professional Engineering 13, no. 10 (2000): 43-45.
Lee, Hau L., V. Padmanabhan, and Seugjin Whang. “Information Distortion in a
Supply Chain: The Bullwhip Effect.” Management Science 43, no. 4 (1997):
546-558.
Lee, Hau L., V. Padmanabhan, and Seungjin Whang. "The Bullwhip Effect in Supply
Chains." Sloan Management Review 38, no. 3 (1997): 93-102.
Lode, L. "The Role of Inventory in Delivery Time Competition." Management
Science 38, no. 2 (1992): 182-197.
McCullen, Peter, and Denis Towill. “Achieving Lean Supply through Agile
Manufacturing.” Integrated Manufacturing Systems 12, no. 6 (2001): 524-533.
Millstein, M., “P&G to Restructure Logistics and Pricing.” Supermarket News (June
27, 1994): 1, 49.
52
Nydick, Robert L., and Ronald Paul Hill. “Using the Analytic Hierarchy Process to
Structure the Supplier Selection Procedure.” Journal of Production
Management 28, no. 2 (1992): 31-36.
Pollitt, David. “Logistics Management at the Threshold of the New Millennium.”
International Journal of Physical Distribution & Logistic Management 28, no.
3 (1998): 167-226.
Reddy, Ram. “Taming the Bullwhip Effect.” Intelligence Enterprise 4, no. 9 (2001):
58-60.
Reid, M. "Change at the Check-Out." The Economist 334 (March 4, 1995): 3-18.
Saaty, Thomas L. and Kevin P. Kearns. “Analytical Planning.” The Organization of
Systems 4th ed. (Pittsburgh: RWS, 1991).
Saaty, Thomas L. “Decision Making for Leaders.” 2nd ed. (Pittsburgh: RWS, 1990).
Schoner, Bertram and William C. Wedley. “Ambiguous Criteria Weights in AHP:
Consequences and Solution.” Decision Sciences 20 (summer 1989): 462-475. J.
Sellers, Peter. "The Dumbest Marketing Ploy." Fortune 126 (5 October 1992): 88-93.
Senge, Peter. “The Fifth Discipline: The Art and Practice of the Learning
Organization.” (New York: Doubleday/Currency,1990).
Sterman, J. "Modeling Managerial Behavior: Misperception of Feedback in a
Dynamic Decision-Making Experiment." Management Science 35, no. 3 (1989):
321-339.
Taylor, Bernard W. “Introduction to Management Science.” Seventh edition: 373-390.
Tom, Davis. “Effective Supply Chain Management,” Sloan Management Review
(summer 1993): 38.
Zahedi, Fatemeh. “The Analytic Hierarchy Process: A Survey of the Method and Its
Application.” Interfaces 16, no. 4 (1986): 96-108.
電子全文
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
台灣手機製造業供應鏈管理系統建置因素之研究
2.
電子產業供應鏈產銷差期研究
3.
新產品技術快速移轉製造部門量產關鍵因素之研究-以電阻產業為例
4.
供應鏈系統下的存貨管理架構之探討-以半導體業在製品庫存管理為例
5.
中小企業全球供應鏈管理之研究-以自行車產業SR公司為例
6.
拉式系統訂單分配之分析與規劃
7.
不完美拉式生產系統採購訂單規劃之分析與建立
8.
電子化資料感應器防制供應鏈長鞭效應之研究─CORBA跨網路平台之運用
9.
小型製造業訂單需求預測方法研究─以台中C公司生產現場為例
10.
範疇策略、顧客優勢引伸與製造優勢-以液晶電視專業代工產業為例
11.
以AHP層級結構法進行大量客製化協同供應系統分析與規劃
12.
晶圓代工廠產能投資決策與需求管理模式之研究
13.
長鞭效應在不同需求型態下關鍵影響因素之探討
14.
資訊共享對供應鏈之績效管理的研究
15.
製造商管理銷售之供應鏈存貨策略
1.
[12] 吳欽杉,劉維琪和林楚雄 (1999),不對稱GARCH模型的研究,管理學報,第十六卷第三期,479-515。
2.
[12] 吳欽杉,劉維琪和林楚雄 (1999),不對稱GARCH模型的研究,管理學報,第十六卷第三期,479-515。
3.
[12] 吳欽杉,劉維琪和林楚雄 (1999),不對稱GARCH模型的研究,管理學報,第十六卷第三期,479-515。
4.
[11] 吳柏林、曾淑惠、吳志文 (1994),一個結構化轉變ARIMA模式的建立及其應用,國立政治大學學報,69,173-195。
5.
[11] 吳柏林、曾淑惠、吳志文 (1994),一個結構化轉變ARIMA模式的建立及其應用,國立政治大學學報,69,173-195。
6.
[11] 吳柏林、曾淑惠、吳志文 (1994),一個結構化轉變ARIMA模式的建立及其應用,國立政治大學學報,69,173-195。
1.
以螞蟻識別系統進行零件分群
2.
應用倒傳遞網路模型設計PDA即時車牌辨識系統
3.
於活性碳纖維布表面生長奈米碳纖維
4.
以鎳-氧化鋁複合催化劑製備具特定結構之奈米碳纖維
5.
添加錫元素對於銅-鋯-鈦非晶質合金之影響
6.
ACELP語音編碼器之混合候選型快速搜尋法
7.
高純度異麥芽寡糖對比菲德氏菌增值的影響
8.
具有詞彙二階關係向量式資訊檢索技術
9.
可調適層級排程設計以支援多媒體串流之即時傳送
10.
利用射頻磁控濺鍍法在各種緩衝層上製備氧化鋅薄膜以作為高頻表面聲波元件應用
11.
側鏈含金剛烷基取代之苯氧基及主鏈具三苯胺結構的新型聚醯胺之合成與光致發光及電致變色性質之研究
12.
供應鏈策略對供應鏈長鞭效應影響之研究
13.
供應鏈長鞭效應之探討
14.
以預測需求控制訂貨減低成本舒緩長鞭效應
15.
利用分支對稱關係於低複雜度捲積碼研究
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室