跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 11:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳翰霖
研究生(外文):Han-Lin Chen
論文名稱:有容量的支配集問題的近似演算法
論文名稱(外文):Approximation Algorithms for Capacitated Domination Problem
指導教授:李德財李德財引用關係
指導教授(外文):Der-Tsai Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:37
中文關鍵詞:支配集問題近似演算法
外文關鍵詞:dominating Setapproximation algorithm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們考慮容量支配集問題。此問題模型化了一般的服務-需求問題
並且是傳統的支配集問題的一個一般化。在這個問題裡,給定一圖並
在各個點上附有三個參數:價格、容量與需求。我們將要尋找一個最
低價格的配置並滿足需求與容量上的限制。我們在不同的需求配置模
型上提供了多項式時間的近似演算法,此演算法也逼近了傳統的支配
集問題的成果。與已知的前人的結果結合起來,已經從兩個方面逼近
了傳統支配集問題的成果。

We consider the Capacitated Domination problem, which models a service requirement assignment scenario and is also a generalization of the well known Dominating Set problem. In this problem, given a graph with three parameters defined on each vertex, namely cost, capacity, and demand, we want to find an assignment of demands to vertices of least cost such that the demand of each vertex is satisfied subject to the capacity constraint of each vertex providing the service.

In terms of polynomial time approximations, we present logarithmic approximation algorithms with respect to different demand assignment models for this problem on general graphs, which also establishes the corresponding
approximating results to the well-known approximations of the traditional Dominating Set problem. Together with previously known results, this closes the problem of generally approximating the optimal solution.

中文摘要i
Abstract iii
1 Introduction 1
2 Preliminary 5
2.1 Traditional Domination Problem 5
2.2 Capacitated Domination Problem 7
3 Weighted Unsplittable Demand 11
3.1 The Definition of Efficiency 12
3.2 The Algorithm for Capacitated Domination Problem with Unsplittable Model 13
3.3 Analysis 14
4 Weighted Splittable Demand 17
4.1 The Difference of Demand Assignment between Unsplittable Model and Splittable Model 17
4.2 Definition of Efficiency 18
4.3 The Algorithm for Capacitated Domination Problem with Splittable Model 19
4.4 Analysis 21
5 Unweighted Splittable Demand 27
5.1 The Preprocessing on Problem Instance 27
5.2 The Algorithm for Capacitated Domination Problem with Unweighted
Splittable Model 29
5.3 Analysis 30
6 Concluding Remarks 31
7 Appendix 33
Bibliography 35

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter
algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002.
[2] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data
reduction for dominating set. J. ACM, 51(3):363–384, 2004.
[3] Brenda S. Baker. Approximation algorithms for np-complete problems on planar
graphs. J. ACM, 41(1):153–180, 1994.
[4] Judit Bar-Ilan, Guy Kortsarz, and David Peleg. Generalized submodular cover problems
and applications. Theor. Comput. Sci., 250(1-2):179–200, 2001.
[5] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal, 51(3), 2008.
[6] Julia Chuzhoy. Covering problems with hard capacities. SIAM J. Comput.,
36(2):498–515, 2006.
[7] V’aclav Chv’atal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3):233–235, 1979.
[8] Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated
Domination and Covering: A Parameterized Perspective, volume 5018 of
Lecture Notes in Computer Science, pages 78–90. Springer Berlin/Heidelberg, 2008.
[9] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,
1998.
[10] Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs:
Branch-width and exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006.
[11] Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Capacitated vertex covering.
J. Algorithms, 48(1):257–270, 2003.
[12] Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Michael A.
Henning. Domination in graphs applied to electric power networks. SIAM J. Discret.
Math., 15(4):519–529, 2002.
[13] Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater. Fundamentals of Domination
in Graphs (Pure and Applied Mathematics). Marcel Dekker, 1998.
[14] D.S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM Journal on Computing, 11(3):555–556, 1982.
[15] David S. Johnson. Approximation algorithms for combinatorial problems. In STOC
’73: Proceedings of the Fifth Annual ACM Symposium on Theory of Computing,
pages 38–49, New York, NY, USA, 1973. ACM.
[16] Mong-Jen Kao, Chung-Shou Liao, and D. T. Lee. Capacitated domination problem.
Algorithmica, 2009.
[17] Ton Kloks. Treewidth. Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer Berlin/Heidelberg, 1994.
[18] Chung-Shou Liao and Der-Tsai Lee. Power Domination Problem in Graphs, volume
3595 of Lecture Notes in Computer Science, pages 818–828. Springer Berlin /
Heidelberg, 2005.
[19] L’aszlo Lov’asz. On the ratio of optimal integral and fractional covers, 1975.
[20] Fred S. Roberts. Graph Theory and Its Applications to Problems of Society. 1978.
[21] P.-J. Wan, K. M. Alzoubi, and O. Frieder. A simple heuristic for minimum connected
dominating set in graphs. International Journal of Foundations of Computer
Science, 14(2):323–333, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top