跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳旻信
研究生(外文):Min-Shin Wu
論文名稱:適用於植入式醫療通訊頻段之低功率無線接收機
論文名稱(外文):Low Power Receivers for MICS Band
指導教授:呂學士
口試委員:孫台平陳筱青邱弘緯汪濤
口試日期:2011-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:86
中文關鍵詞:互補式金氧半導體植入式醫療通訊系統開關鍵結調變接收機差動式包絡檢測器頻率移位鍵結調變接收機
外文關鍵詞:CMOSMICS bandOOK receiverDifferential envelope detectorFSK receiver。
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,國人對於健康生理的監控愈來愈多的需求下,使得植入式醫療通訊系統得以快速地發展。因此在這樣的需求背景下,本論文將針對植入式醫療通訊系統提出兩種不同的調變機制的接收機 ─ “開關鍵結調變接收機”及 “頻率移位鍵結調變接收機”。

本篇論文所提出的開關鍵結調變接收機實作在TSMC CMOS Standard 0.18um製程下,而接收機包含以下的電路區塊 ─ 低電壓放大器、多級增益放大器、雙極差動包絡檢波器以及後級的比較器,其中本篇論文所提出的雙極差動包絡檢波器更是此接收機的創新想法之一,並且改善以往包絡檢波器容易因為受到環境雜訊干擾等因素,進而提高整體接收機的效能表現。此接收機在資料傳輸速率為76.8kbps和0.1%誤碼率時可以達到-68dBm的靈敏度,總功率消耗為0.8mW。

不同於前段所提出的開關鍵結調變接收機,本論文更針對抗噪性更好的頻率移位鍵結調變來進行設計出創新性的接收機架構,其中頻率移位鍵結解調器更是屏棄掉過去傳統的自我混波解調或是延遲相位解調的方式,而是改採用充電泵的特性來辨別不同頻率,此方法將造成不同頻率的訊號有不一樣的充電電壓高度差,因此有別於傳統的解調機制,此解調器將可以省下許多不必要的電能消耗。最後,整體接收機在資料傳輸速率為75kbps和0.1%誤碼率時更可以達到-77dBm的靈敏度,總功率消耗為1mW。


In recent years, the demands of health care systems are growing up rapidly, so the medical implantable communication systems are quickly developed. Therefore, this paper will focus on medical implantable communication system and propose two different mechanisms of receivers ─ "On-off keying modulation receiver," and "frequency-shift key modulation receiver. "

This On-off keying modulation receiver is implemented in TSMC CMOS Standard 0.18um process, and the receiver contains the following circuit blocks ─ a low-voltage amplifiers, a multi-stage gain amplifier, a differential envelope detector and one comparator. This differential envelope detector is an innovation circuits and improves the shortcut of the traditional envelope detector in the past. For example, the noise will interfere the traditional envelope, but the proposed detector can eliminate the common noise to improve overall performance. In summary, this receiver achieves the sensitivity of -68dBm at 0.1% BER with 76.8kbps data rate, and total power consumption is 0.8mW.

As we mentioned before, this paper is also proposed a frequency-shift key modulation receiver which is using a charge pump to demodulate the two differential frequency signals, unlike the conventional demodulation systems , the demodulator will be able to save unnecessary power consumption. Finally, this FSK receiver is implanted in TSMC CMOS Standard 0.18um process and achieves the sensitivity of -77dBm at 0.1% BER with 75kbps data rate, and total power consumption is 1mW.

Chapter 1 2
1.1 Motivation 2
1.2 Thesis Organization 4
1.3 Reference 5
Chapter 2 6
2.1 Introduction 6
2.1 Heterodyne Receiver 7
2.2 Homodyne Receivers 12
2.3 Reference 17
Chapter 3 18
3.1 Introduction 18
3.2 OOK Receiver Architecture 19
3.3 Description of Receivers 20
3.4 Block Diagrams of the OOK Receiver 22
3.4.1 Low voltage amplifier 23
3.4.2 Cascaded gain amplifiers 24
3.4.3 Demodulator circuit 24
3.4.4 Comparator and buffer 26
3.5 Simulation and Measurement 27
3.6 Summary 37
3.7 Reference 39
Chapter 4 40
4.1 introduction 40
4.2 FSK modulation 41
4.3 System Architecture 42
4.4 Receiver implementation 46
4.4.1 Low Noise Amplifier 46
4.4.2 Mixer 53
4.4.3 IF Amplifier and Demodulator 59
4.5 Simulation and Measurement Result 69
4.6Summary 77
4.7 Reference 80
4.8 Appendix 83
Chapter 5 86



[1.1] Huseyin S. Savci, Ahmet Sula, Zheng Wang, Numan S. Dogan, “MICS transceivers: regulatory standards and applications”, SoutheastCon, 2005.

[1.2] Bin Zhen, Huan-Bang Li and Ryuji Kohno, “Networking issues in medical implant communications”, International Journal of Multimedia and Ubiquitous Engineering, 2009.

[1.3] Peter D. Bradley, “An Ultra Low Power, High Performance Medical Implant Communication System (MICS) Transceiver for Implantable Devices”, Biomedical Circuits and Systems Conference, 2006

[1.4] http://www.cyberonics.com

[2.1] Behzad Razavi, “RF Microelectronics,” Prentice Hall Inc.,1998.

[2.3] B. Razavi, “Challenges in Portable RF Transceiver Design,” IEEE Circuits and Devices Magazine, vol. 12, pp. 12-25, Sept. 1996.

[2.6] 葉昆穎, “A Low Power Monolithic RF Receiver in HBT,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.

[2.7] 李威儀, “RF Front-end Circuits Suitable for Bio-medical Wireless Sensor Network,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.

[2.8] 洪煒翔, “Design and Analysis of Broadband Wireless RF Circuits,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.

[2.9] 鄒震, “Low Power FSK Receiver for 315/433/868/915MHz ISM Band,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.

[3.1] FCC Rules and Regulations, “MICS Band Plan,” Part 95, Jan. 2003

[3.2] A. J. Johansson, “Wireless communication with medical implants: antennas and propagation,” Thesis, Lund University, 2004

[3.3] Y.T. Lin, T. Wang, S. S. Lu, and G. W. Huang, "A 0.5 V 3.1 mW Fully Monolithic OOK Receiver for Wireless Local Area Sensor Network," ASSCC, 2005

[3.4] 李威儀, “RF Front-end Circuits Suitable for Bio-medical Wireless Sensor Network,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.

[4.1] Behzad Razavi, “RF Microelectronics,” Prentice Hall Inc.,1998.

[4.2] FCC Rules and Regulations, “MICS Band Plan,” Part 95, Jan. 2003

[4.3] Copani, T.; Seungkee Min; Shashidharan, S.; Chakraborty, S.; Stevens, M.; Kiaei, S.; Bakkaloglu, B.; “A CMOS Low-Power Transceiver With Reconfigurable Antenna Interface for Medical Implant Applications,” Microwave Theory and Techniques, 2011

[4.4] Seungkee Min ; Shashidharan, S. ; Stevens, M. ; Copani, T. ; Kiaei, S. ; Bakkaloglu, B. ; Chakraborty, S. ; “A 2mW CMOS MICS-band BFSK transceiver with reconfigurable antenna interface,” RFIC, 2010

[4.5] J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, “A 350 uW CMOS MSK transmitter and 400 uW OOKsuper-regenerative receiver for medical implant communications,” IEEE J. Solid-State Circuits,vol. 44, no. 4, pp. 1248–1259, Apr. 2009

[4.6] N. Cho, J. Bae, and H.-J. Yoo, “A 10.8 mW, body channel communication/
MICS dual-band transceiver for a unified body sensor network
controller,” in IEEE Int. Solid-State Circuits Soc. Conf. Tech. Dig., Feb.
2009, pp. 424–425, 425a

[4.7] Simon Haykin, “Communication Systems,” John Wiley & Sons.

[4.8] Joonsung Bae, Namjun Cho, and Hoi-Jun Yoo, “A 490uW Fully MICS Compatible FSK Transceiver for Implantable Devices,” Symposium on VLSI Circuits, 2009

[4.9] Maysam Ghovanloo, and Khalil Najafi, “A Modular 32-Site Wireless Neural Stimulation Microsystem,” IEEE J. Solid-State Circuits, 2004

[4.10] M. Ghovanloo and K. Najafi, “A fully digital frequency shift keying demodulator chip for the wireless biomedical implants,” in Proc. IEEE Southwest Symp. Mixed-Signal Design, Feb. 2003, pp. 223–227.

[4.11] Ro-Min Weng, Jing-Chyi Wang, Shu-Ya Li, and Hung-Che Wei, “A Low Power Folded Mixer Using Even Harmonic Technology,” Radio-Frequency Integration Technology, 2007

[4.12] Ro-Min Weng, Shu-Ya Li, and Jing-Chyi Wang, “Low Power Frequency-Shift Keying Demodulators for Biomedical Implants,” Electron Devices and Solid-State Circuits, 2007

[4.13] 洪煒翔, “Design and Analysis of Broadband Wireless RF Circuits,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top