跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃英豪
研究生(外文):Ying-Hao Huang
論文名稱:可撓性硒化銅銦鎵薄膜太陽能電池 吸收層不同堆疊法之研究
論文名稱(外文):A study of various depositions of absorption layers in CIGS thin film solar cells
指導教授:張瑞慶張瑞慶引用關係黃金榮黃金榮引用關係
指導教授(外文):Rwei-Ching ChangChin-Jung Huang
口試委員:張瑞慶魏哲宏黃金榮
口試委員(外文):Rwei-Ching ChangWei Che-hungChin-Jung Huang
口試日期:2015-06-12
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:103
中文關鍵詞:硒化銅銦鎵太陽能電池吸收層
外文關鍵詞:CIGSSolar cellsAbsorption layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
CIGS(硒化銅銦鎵)薄膜型太陽能電池,有著高吸收係數的特性,因此在能源問題浮現的現代,備受大家關注。本文針對CIGS薄膜之不同堆疊製程進行研究探討,先以直流濺鍍法將Mo薄膜沈積於不鏽鋼基材上,再利用三明治堆疊法(In/CuGa/In)沈積CuGa及In作為前驅物層,再以高溫爐進行三階段硒化,使前驅物與Se結合形成CIGS吸收層。並探討不同堆疊方式的前驅物製程對CIGS的影響,然後將沈積好的薄膜,先以SEM電子顯微鏡及X光能譜分析儀觀看表面結構及成份分析,接著以3D表面輪廓儀量測表面粗造度,再以X光繞射儀量測晶體結構強度。緩衝層是以原子束蒸鍍機製備ZnS薄膜再量測光穿透率,透明導電層是以濺鍍機以及ALD進行AZO薄膜沈積,再量測光穿透率以及電性。最後是以三明治堆疊法(In 600 nm / CuGa 300 nm / In 600 nm)這組試片,Cu/(In+Ga) ratio (0.941)接近做為太陽能電池元件,晶體結構2θ約26.97 ∘的 ( 112 ) 波峰的晶體結構強度約59875(cps)是最佳的,緩衝層ZnS光穿透率最高為75.43%,透明導電層是以ALD製備的AZO光穿透率最高為85.46%,在量測電性方面,以In 600 nm / CuGa 300 nm / In 600 nm這組電性最佳。
CIGS thin films have become one of the most important absorption layer in solar cells because of its high efficiency. This work characterizes flexible CIGS solar cells synthesized with various deposition methods. The Mo conducting films is sputtered on stainless steel shells, and utilizes sandwich deposition method (In/CuGa/In) to sputter CIG precursor films on the Mo/stainless steel substrates. Then, the CIGS absorption layers are synthesized with three stage high temperature selenization. The surface roughness, micro structure, composition, crystallization, and conductivity of the CIGS are characterized by the 3D profiler, scanning electronic microscope, energy dispersive spectrometer, X-ray diffraction machine, and Hall effects meter. To finish the solar cell, the ZnS buffer layer and AZO transparently conductive layer are deposited on the CIGS film with E-beam evaporation, sputtering, and atomic layer deposition. The result shows that the specimen of In 600 nm/ CuGa 300 nm/ In 600 nm with Cu/(In+Ga) ratio 0.941 behaves the best photoelectric performance.
論文摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景 2
1.3 文獻回顧 4
1.3.1 Mo薄膜之基本特性及應用 4
1.3.2 CIGS 薄膜之基本特性及應用 5
1.3.3 CIGS吸收層之微結構及優選取向 6
1.3.4 緩衝層相關文獻回顧 8
1.3.5 透明導電膜相關文獻回顧 9
1.4 本文作法 10
第二章 基礎理論與研究方法 13
2.1 太陽能原理 13
2.1.1 太陽光譜 13
2.1.2 太陽能發展 13
2.1.3 半導體簡介 14
2.1.4 太陽能原理 16
2.2 濺鍍原理 18
2.3 原子層沈積原理 19
2.3.1 原子層化學氣相沈積之成長機制 21
2.3.2 溫度對於原子層沈積系統之影響 29
2.4 電子束蒸鍍機(evaporation chamber) 30
2.5 表面輪廓儀 (3D Profiler) 32
2.5.1 表面輪廓儀架構及原理 32
2.5.2 表面輪廓儀探針特性 33
2.5.3 表面輪廓儀量測時注意事項 33
2.5.4 表面輪廓儀實驗步驟 33
2.6 X光繞射儀 34
2.6.1 X光繞射儀架構 34
2.6.2 X光繞射儀原理 35
2.6.3 優選取向 36
2.6.4 晶粒大小計算 37
2.6.5 X光繞射儀量測時注意事項 39
2.6.6 X光繞射儀實驗步驟 39
2.7 X光能譜分析儀 39
2.7.1 X光能譜分析儀原理 40
2.7.2 X光能譜分析儀注意事項 40
2.7.3 X光能譜分析儀實驗步驟 41
2.8 光激發光譜儀 41
2.8.1 反射率架構與原理 41
2.8.2 反射率量測時注意事項 42
2.8.3 反射率實驗步驟 42
2.9 四點探針電阻儀 42
2.9.1 四點探針電阻儀原理 42
2.9.2 四點探針電阻儀量測注意事項 43
2.9.3 四點探針電阻儀實驗步驟 44
2.10 霍爾效應量測儀 44
2.10.1 霍爾效應量測儀架構與原理 44
2.10.2 霍爾效應量測時注意事項 45
2.10.3 霍爾效應量測儀實驗步驟 45
第三章 薄膜製作 46
3.1 基材選用 46
3.2 實驗材料 47
3.2.1 背電極材料 47
3.2.2 前驅物材料 48
3.2.3 硒化材料 48
3.3 鍍前處理 49
3.3.1 表面油汙處理 49
3.3.2 清潔液清洗 49
3.3.3 清除表面殘留溶劑 49
3.3.4 烘乾試片 49
3.4 實驗參數 50
3.4.1 實驗步驟 50
3.4.2 Mo初步分析 51
3.5 沈積前驅物薄膜 53
3.5.1 前驅物比面分析 54
3.5.2 前驅物成份分析 59
3.6 硒化 61
3.6.1 實驗步驟 61
第四章 結果與討論 64
4.1 表面結構分析 64
4.2 成份分析 68
4.3 表面粗糙度分析 72
4.4 CIGS薄膜之晶相分析 77
4.5 硫化鋅(ZnS)緩衝層鍍製 81
4.5.1 硫化鋅膜厚量測 82
4.5.2 硫化鋅光穿透率分析 84
4.6 透明導電層 (AZO)製作 84
4.6.1 AZO膜厚量測 86
4.6.2 AZO光穿透率分析 87
4.6.3 電特性分析 87
4.7 P-N接面檢測 88
4.8 正電極鋁金屬製作 94
4.9 日光燈模擬系統 95
第五章 結論 96

圖目錄
圖1-1 CIGS薄膜型太陽能電池示意圖 2
圖1-2 各種太陽能電池的效率演變圖(1975~2013) 4
圖1-3 體心立方結構 4
圖1-4 黃銅礦結構 6
圖1-5 SEM觀察CIGS薄膜不同 Ga/(In+ Ga)原子比之橫截面圖 7
圖1-6 CIGS在不同Ga/(In+ Ga)原子比之晶體結構強度圖 8
圖1-7 實驗流程圖 12
圖2-1 太陽能電池的原理圖[61] 17
圖2-2 太陽能電池暗電流與光電流之電壓特性曲線[29] 18
圖2-3 濺鍍示意圖 19
圖 2 4 ALD垂直式成長腔體示意圖 20
圖 2 5 ALD水平式成長腔體示意圖 20
圖 2 6 ALD之反應室 21
圖 2 7 原子層沈積系統示意圖 22
圖 2 8 原子層沈積四個步驟(1)前驅物引進(2)沖洗(3)反應物引進(4)沖洗 23
圖 2 9 一個循環時間等於兩種前驅物的脈衝時間加上兩個沖洗的時間 24
圖 2 10 Al2O3薄膜經由原子層沈積,均勻地覆蓋在HSG表面上 25
圖 2 11 TiN 薄膜均勻地覆蓋在25:1 高深寬比的深溝渠內 25
圖 2-12 氧化鋅摻鋁薄膜沈積示意圖 28
圖 2-13 氧化鋅摻鋁薄膜沈積總時間圖 29
圖 2 14 原子層沈積窗口,描述表面薄膜生長過程速率與溫度之關係圖 30
圖2-15 電子束蒸鍍機示意圖 31
圖2-16 表面輪廓儀量測示意圖 32
圖2-17 表面輪廓儀儀器架構示意圖 33
圖2-18 X光繞射儀架構 34
圖2-19 布拉格繞射原理 35
圖2-20 X-ray繞射量測方式 36
圖2-21 掃描式電子顯微鏡附加X光能譜分析儀 39
圖2-22 化學成份分析圖 40
圖2-23 量測反射率架構圖 41
圖2-24 四點探針電阻儀示意圖 43
圖2-25 霍爾效應量測儀架構圖 44
圖3-1  不鏽鋼基材之外觀圖 46
圖3-2  Mo濺鍍靶材之外觀圖 47
圖3-3  CuGa、In濺鍍靶材之外觀圖 48
圖3-4 Se顆粒之外觀圖 48
圖3-5  濺鍍機之外觀 50
圖3-6  Mo / SS之表面粗糙度示意圖 52
圖3-7 Mo / SS之趨勢圖 52
圖3-8 實驗堆疊示意圖 54
圖3-9 Sample A之前驅物SEM表面結構圖 55
圖3-10 Sample B之前驅物SEM表面結構圖 55
圖3-11 Sample C之前驅物SEM表面結構圖 56
圖3-12 Sample D之前驅物SEM表面結構圖 56
圖3-13 Sample E之前驅物SEM表面結構圖 57
圖3-14 Sample F之前驅物SEM表面結構圖 57
圖3-15 Sample G之前驅物SEM表面結構圖 58
圖3-16 Sample H之前驅物SEM表面結構圖 58
圖3-17 Sample A、B成份分析示意圖 59
圖3-18 Sample C、D成份分析示意圖 59
圖3-19 Sample E、F成份分析示意圖 60
圖3-20 Sample G、H成份分析示意圖 60
圖3-21 硒化高溫爐示意圖 62
圖3-22 硒化三階段生溫曲線圖 63
圖4-1 Sample A之CIGS的 SEM表面結構圖 64
圖4-2 Sample B之CIGS的 SEM表面結構圖 65
圖4-3 Sample C之CIGS的 SEM表面結構圖 65
圖4-4 Sample D之CIGS的 SEM表面結構圖 66
圖4-5 Sample E之CIGS的 SEM表面結構圖 66
圖4-6 Sample F之CIGS的 SEM表面結構圖 67
圖4-7 Sample G之CIGS的 SEM表面結構圖 67
圖4-8 Sample H之CIGS的 SEM表面結構圖 68
圖4-9 Sample A、B成份分析示意圖 70
圖4-10 Sample C、D成份分析示意圖 70
圖4-11 Sample F、G成份分析示意圖 71
圖4-12 Sample G、H成份分析示意圖 71
圖4-13 Sample A 之CIGS表面粗糙度示意圖 72
圖4-14 Sample B 之CIGS表面粗糙度示意圖 73
圖4-15 Sample C 之CIGS表面粗糙度示意圖 73
圖4-16 Sample D 之CIGS表面粗糙度示意圖 74
圖4-17 Sample E 之CIGS表面粗糙度示意圖 74
圖4-18 Sample F 之CIGS表面粗糙度示意圖 75
圖4-19 Sample G 之CIGS表面粗糙度示意圖 75
圖4-20 Sample H 之CIGS表面粗糙度示意圖 76
圖4-21 Sample A、B、C、D、E、F、G、H粗糙度之趨勢圖 77
圖4-22 不同堆疊之 CIGS( Sample A、B、C、D )之( 112 )晶相分析示意圖 79
圖4-23 不同堆疊之 CIGS( Sample E、F、G、H ) 之 ( 112 )晶相分析示意圖 80
圖4-24 ZnS /glass 量測50 nm膜厚示意圖 81
圖4-25 ZnS /glass 量測透光率之示意圖 82
圖4-26 膜厚量測示意圖 82
圖4-27 膜厚量測示意圖 83
圖4-28 膜厚量測示意圖 83
圖4-29 膜厚量測示意圖 83
圖4-30 四組ZnS之透光率示意圖 84
圖4-31 AZO / Glass (ALD)量測500 nm之膜厚示意圖 86
圖4-32 AZO / Glass (Sputter)量測500 nm之膜厚示意圖 86
圖4-33 氧化鋅摻鋁薄膜沈積於Glass上之光穿透率 87
圖4-34 Sample A CIGS / MO / SS量測P-N示意圖 88
圖4-35 Sample B CIGS / Mo / SS量測P-N示意圖 89
圖4-36 Sample C CIGS / Mo / SS量測P-N示意圖 89
圖4-37 Sample D CIGS / Mo / SS量測P-N示意圖 90
圖4-38 Sample E CIGS / Mo / SS量測P-N示意圖 90
圖4-39 Sample F CIGS / Mo / SS量測P-N示意圖 91
圖4-40 Sample G CIGS / Mo / SS量測P-N示意圖 91
圖4-41 Sample H CIGS / Mo / SS量測P-N示意圖 92
圖4-42 ZnS / glass量測P-N示意圖 92
圖4-43 AZO / glass (ALD)量測P-N示意圖 93
圖4-44 AZO / glass (Sputter)量測P-N示意圖 93
圖4-45 鋁金屬電極外觀 94
圖4-46 不同堆疊之日光模擬系統檢測 95


















表目錄
表3-1 MO薄膜沈積於不鏽鋼基材之參數 51
表3-2 MO濺鍍於不銹鋼箔上之分析 53
表3-3 CIG前驅物薄膜濺鍍於MO/SS之參數 53
表3-4 前驅物之成份分析表 61
表3-5 硒化實驗參數 63
表4-1 CIG硒化後之成份分析 69
表4-2 不同堆疊之CIGS薄膜表面粗糙度 76
表4-3 不同堆疊之 CIGS( Smaple A、B、C、D ) 之 ( 112 ) 晶體結構關係 79
表4-4 不同堆疊之 CIGS( Smaple E、F、G、H ) 之 ( 112 ) 晶體結構關係 80
表4-5 ZnS薄膜沈積之參數 81
表4-6 濺鍍AZO薄膜沈積參數 85
表4-7 氧化鋅摻鋁薄膜沈積於Glass上之參數 85
表4-8 氧化鋅摻鋁薄膜沈積於Glass上之光穿透率 88
表4-9 正電極鋁金屬鍍製參數 94

1.陳宏仁、王立義、邱文英,「有機太陽能電池之發展現況」,《工業材料雜誌》,192期,頁102-113,2002。
2.楊德仁、顏怡文,「太陽能電池材料」,《五南圖書出版有限公司》,台北,2008。
3.D. Lidgate, “Green energy,” Green energy Engineering science and education journal, Vol. 1, No. 5, Oct. 1992, pp.221-227.
4.鄭名山,「太陽能發展簡介」,《物理雙月刊》,29卷3期,頁 707-716,2007。
5.O. Savadogo, “Chemically and electrochemically deposited thin films for solar energy materials,” Solar Energy Materials and Solar Cells, No. 52, May.1998, pp. 361-388.
6.H. J. Moller, “Semiconductors for Solar Cell,” Artech House, Boston, 1993.
7.P. J. Sebastian, M. E. Calixto, R. N. Bhattacharya, “CIS and CIGS based photovoltaic structures developed from electrodeposited precursors,” Solar Energy Materials and Solar Cells, No. 59, 1999, pp. 125-135.
8.K. Bouabid, A. Ihlal, A. Manar, A. Outzourhit, E.L. Ameziane, “Effect of deposition and annealing parameters on the properties of electrodeposited CuIn1-XGaXSe2 thin films,” Thin Solid Films , No. 488, 2005, pp. 62-67.
9.T. Wada, Y. Hashimoto, S. Nishiwaki, T. Satoh, S. Hayashi, T. Negami, H. Miyake, “High-efficiency CIGS solar cells with modified CIGS surface,” Solar Energy Materials and Solar Cells , No. 67,2001, pp. 305-310.
10.M. A. Contreras, B. Eggas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells,” Progress Photovoltaics 7 , 1999, p. 311.
11.K. Ramanathan, G. Teeter, J. C. Keane, R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films, No. 480, 2005, p. 499.
12.K. Ramanathan, M. A. Contreras, C. L. Perkins, “Properties of 19.2% efficiency,” Progress in Photovoltaics , No. 11, 2003, p. 225.
13.T. Yamaguchi, T. Kobata, S. Niiyama, “Thin films of Cu(In,Ga)Se2 and ordered vacancy compound prepared by thermal crystallizationand their photovoltaic applications,” Solar Energy Materials and Solar Cells, No. 75, 2003, p. 87.
14.D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann and A. N. Tiwari, ”Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells”, Thin Solid Films Vol. 480-481,2005, pp.118-123
15. U. Rau,H.W. Schock,“Electronic properties of Cu (In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges,” Applied Physics A: Materials Science and Processing, Vol. 69, No. 2, 1999, pp. 131-147.
16.S. Nishiwaki, N. Kohara, T. Negami, T. Wada, “MoSe2 layer formation at Cu(In,Ga)Se2/Mo interfaces in high efficiency Cu(In1-xGax)Se2 Solar Cells, ” Japanese journal of applied physics, Part 2:Letters, Vol. 37, No. 1, 1998, pp.71-73.
17. D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F.V. Kurdesau, A.N. Tiwariand, M. Dobeli, “Formation and characterization of MoSe2 for Cu(In、Ga)Se2 based solar,” Thin Solid Films, Vol. 480-481, 2005, pp. 433-438.
18. Z.H. Li, E.S. Cho, S.J. Kwon, 2011, “Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells”, Applied Surface Science, Vol. 257, pp. 9682-9688
19. D. Haneman, “Properties and applications of copper indium diselenide,” Critical Reviews in Solid State and Materials Sciences, 1988, p. 377.
20.A. Rockett, R.W. Birkmire, “CuInSe2 for photovoltaic applications,” Journal of Applied Physics. No. 70, 1991, p. R81.
21.U. Rau, H.W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements,current understanding,and future challenges,” Journal of Applied Physics A Vol. 69 , 1999, p. 131.
22.H. Neumann, “Optical properties and electronic band structure of CuInSe2, ” Vol. 16, 1986, pp. 317-333.
23.I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To,R. Noufi, “19.9%-efficient,” Progress in Photovoltaics: Research and Applications, No. 16 , 2008, p. 235.
24.M.A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables,” Progress in Photovoltaics: Research and Applications, No. 15, 2007, p. 425.
25.P. Jackson, R. Würz, U. Rau, J. Mattheis, M. Kurth, T. Schlötzer, G. Bilger,J.H. Werner, “High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells,” Progress in Photovoltaics: Research and Applications, No. 15, 2007, p. 507.
26.M. Chandramohan, S. Velumani, T. Venkatachalam, “Experimental and theoretical investigations of structural and optical properties of CIGS thin films,” Materials Science and Engineering B, No. 174,2010, pp. 205-208.
27.M.A. Contreras, K. Ramanathan, J.A. Shama, F. Hasoon,D.L. Young, B. Egass, R. Noufi, “Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells,” Progress in Photovoltaics: Research and Applications, No. 13,2005, pp. 209-216.
28.Y. C. Lin, J. H. Ke, W. T. Yen, S. C. Liang, C. H. Wu, and C. T. Chiang, “Preparation and characterization of Cu(In,Ga)(Se,S)2 films without selenization by co-sputtering from Cu(In,Ga)Se2 quaternary and In2S3 targets”, Applied Surface Science, Vol. 257, 2011, pp.4278-4284.
29.J. Sunghun, A. Sejin, H.Y. Jae, G. Jihye, K. Donghwan, Y. Kyunghoon, “Effect of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique,” Current Applied Physics, No. 10, 2010, pp. 990-996.
30.H. Miyazaki, R. Mikami, A. Yamada, M. Konagai, “Cu(InGa)Se2 thin film absorber with high Ga contents and its application to the solar cell,” Journal of Physics and Chemistry of Solids, No. 64, 2003, pp. 2055-2058.
31.W.N. Shafarman, R. Klenk, B.E. McCandless, “Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap,” Journal of Applied Physics, No. 79, 1996, p. 7324.
32.T. Nakata, A. Kunioka、Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films、Appl. Phys. Lett. Vol.74, 1999, pp. 2444-2446.
33. T. Nakata, K. Furumi, A. Kunioka、High Efficiency Cd-Free Cu(In, Ga)Se2 Thin Film Solar Cells with Chemically Deposited ZnS buffer Layers、IEEE Electron Devices, Vo.46,1999, pp 2093-2097.
34.Capasso, F. and G. Maragaritondo, Heterojunction band discontinuities: Physics and device application. Elsevier science, 1987
35.R.Mikami,H.Miyazaki,T.Abe,A.Yamada,and M.Konagai,“Chemical bath deposited (CBD)-ZnO buffer layer for CIGS solar cells“ 2003,pp.519
36.R.N. Bhattacharya *, K. Ramanathan. Cu(In,Ga)Se2 thin film solar cells with buffer layer alternative to CdS. Solar Energy Vol. 77 , 2004, pp.679–683
37.M. Munzel C. Deibel, V. Dyakonov, J. Parisi ,W. Riedl, F. Karg “Electrical characterization of defects in Cu In,Ga Se2 solar cellscontaining a ZnSe or a CdS buffer layer“,Vol. 387,2001,pp.231-234
38.A Rumberg, A Gerhard, A Jäger-Waldau, M. Ch Lux-Steiner “ZnSe buffer prepared by iodine-enhanced chemical vapour deposition for Cu(In,Ga)(Se,S) 2-based solar cells“Vol.75,2003,pp.1-8.
39.S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon and J. Song, Growth of CuIn3Se5 layeron CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells, Thin Solid Films,Vol.323,1998, pp.265-269.
40.S. Ikeda, R. Kamai, S. Min Lee, T. Yagi, T. Harada, M. Matsumura, “A superstrate solar cell based on In2(Se,S)3 and CuIn(Se,S)2 thin films fabricated by electrodeposition combined with annealing”, Solar Energy Materials & Solar Cells, ,Vol. 95,2011, pp. 1446–1451.
41.K.K. Purushothaman, M. Dhanashankar, G. MuralidharanPreparation and characterization of F doped SnO2 films and electrochromic properties of FTO/NiO films,Vol.9,2000,pp.67-72.
42.M.R. Khelladi, L. Mentar, M. Boubatra, A. Azizi, and A. Kahoul,“Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium“,Vol 122, ,2010, pp.449-453.
43.Jiaxiang Liu, Da Wu, Shengnan Zeng,“Influence of temperature and layers on the characterization of ITO films“Vol.209, 2009,pp.3943-3948.
44.Hamid Reza Fallah, Mohsen Ghasemi varnamkhasti , Mohammad Javad Vahid “Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation“Vol.35, 2010,pp.1527-1530.
45.Sheng-Yuan Chu, Walter Water, Jih-Tsang Liaw“Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering“ Vol. 23, 2003,pp.1593-1598.
46.E.V. Johnson, P. Prod'homme,C. Boniface,K. Huet, T. Emeraud, P. Roca i Cabarrocas“Excimer laser annealing and chemical texturing of ZnO:Al sputtered at room temperature for photovoltaic applications“ Vol.95,2011,pp.2823-2830.
47.F. Couzinié-Devy , N. Barreau, J. Kessler“Dependence of ZnO:Al properties on the substrate to target position in RF sputtering“Vol.516,2008,pp.7094-7097.
48.Y.S. Kim, S.B. Heo, H.M. Lee, Y.J. Lee, I.S. Kim, M.S. Kang, D.H. Choi, B.H. Lee, M.G. Kim, Daeil Kim“Effects of electron irradiation on the properties of GZO films deposited with RF magnetron sputtering“,Vol258, 2010,pp.3903-3906.
49.C.H. Huang, D.Y. Chen, C.Y. Hsu,“Influence of deposition parameters and annealing treatment on the properties of GZO films grown using rf magnetron sputtering“,Vol.38,2012,pp.1057-1063.
50.J. L. Chung, J. C. Chen, C. J. Tseng, “Preparation of TiO2-doped ZnO films by radio frequency magnetron sputtering in ambient hydrogen-argon gas”, Appl. Surf. Sci. Vol.255, 2008,pp,2494-2499.
51.Young Ran Park, Kwang Joo Kim“Optical and electrical properties of Ti-doped ZnO films: observation of semiconductor–metal transition“Vol.123,2002,pp147-150.
52.Y.C. Lin, M.Z. Chen, C.C. Kuo, W.T. Yen“Electrical and optical properties of ZnO:Al film prepared on polyethersulfone substrate by RF magnetron sputtering“Vol.337, 2009,pp.52-56.
53.Ji-Hyeon Park, Beom-Ki Shin, Hong-Man Moon, Min-Jung Lee, Kang-Il Park, Kyung-Jun Ahn, Woong Lee, Jae-Min Myoung“Effect of the substrate temperature on the properties of Ga-doped ZnO films for photovoltaic cell applications deposited by a pulsed DC magnetron sputtering with a rotating cylindrical target “ Vol.86,2012,pp.1423-1427.
54.Jianhua Hu and Roy G. Gordon“Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition“Vol.71, 1992,pp.880-890.
55.U. Dagkaldiran, A. Gordijn, F. Finger, H.M. Yates, P. Evans, D.W. Sheel,Z. Remes, M. Vanecek“Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD“,Vol.159,160,2009,pp6-9.
56.D.R. Sahu,Shin-Yuan Lin, Jow-Lay Huang“Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation“Vol.253,2007,pp.4886-4890.
57.N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M.S. Aida,M. Jacquet“Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation“Vol.252,2006,pp.5594-5597.
58.Ka Eun Lee, Mingsong Wang, Eui Jung Kim, Sung Hong Hahn“Structural, electrical and optical properties of sol–gel AZO thin films“,Vol.9,2009,pp.683-387.
59.S.K. Neogi, R. Ghosh, G.K. Paul, S.K. Bera, S. Bandyopadhyay,“Effects of Co doping on structural, morphological and transport properties of sol–gel AZO thin films“,Vol.487, 2009,pp.269-273.
60.C.Y. Hsu, Y.C. Lin, L.M. Kao, Y.C. Lin,“Effect of deposition parameters and annealing temperature on the structure and properties of Al-doped ZnO thin films“,Vol.124, 2010,pp.330-335.
61.雷文凱,「使用電化學法備製二硒化銅銦薄膜特性之研究」,《長庚大學墊子工程研究所碩士論文》,2009。
62. 羅正忠,張鼎張,「半導體製程技術導論」,《修訂版》,2001頁222-224。
63.杜誌祥,「氧化銦錫薄膜沈積於撓性基材之破裂分析」,《聖約翰科技大學自動化及機電整合研究所碩士論文》,台北、台灣,2008。
64.董雅清,「濺鍍Ti與Ni/Ti薄膜之殘留應力分析」,《聖約翰科技大學自動化及機電整合研究所碩士論文》,2008。
65.許樹恩、吳泰伯,「X光繞射原理與材料結構分析」,《中國材料科學學會》,1993。
66.邱柏凱,「薄膜之殘留應力分析」,《儀科中心簡訊77期》,國家實驗研究院儀器科技研究中心,。2006
67.H. Savaloni, A. Taherizadeh, A. Zendehnam,“ Residual stress and structural characteristics in Ti and Cu sputtered films on glass substrates at different substrate temperatures and film thickness,” Physica B, 2004, Vol. 349, pp. 44-55.
68.H. Klung, L. Alexander, “In:X-ray diffraction procedure,” Wiley, 1954, p. 503.
69.許樹恩,吳泰伯,「X光繞射原理與材料結構分析」,《中國材料科學學會》,1993。
70.Y.T. Liao,“Four- point probe user manual,” NSC Southern Region MEMS Research Center, 2003.
71.施秉豪,「鉬電極層對CIGS薄膜太陽能電池之性質影響分析」,《聖約翰科技大學自動化及機電整合研究所碩士論文》,2011。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top