跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭裔平
研究生(外文):Kuo, Yi-Ping
論文名稱:應用於低功率事件驅動感知平台之超低電壓全數位操控線性穩壓器
論文名稱(外文):Ultra-Low Voltage All Digitally Controlled Linear Voltage Regulator Design for Event-Driven Energy-Efficiency Sensing Platform
指導教授:黃威黃威引用關係莊景德
指導教授(外文):Hwang, WeiChuang, Ching-Te
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:93
中文關鍵詞:全數位線性穩壓器
外文關鍵詞:All digitally controlled linear voltage regulator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們提出了兩種應用於低功率事件驅動感知平台的全數位操控線性穩壓器。兩個全數位操控線性穩壓器皆實現在台積電65奈米低功耗CMOS製程,並可運作在近臨界操作電壓。
在第一個全數位操控線性穩壓器中,使用數位錯誤偵測器取代類比放大器。一種新的製程、電壓、溫度感知設計用來減輕環境變異,並提升全數位操控線性穩壓器的解析度。
在第二個全數位操控線性穩壓器中,使用以比較器為基礎的錯誤偵測器取代類比放大器。在不同的環境變異與負載變化下,我們提出兩種方法來調整PMOS的強度,以達到降低輸出漣漪的目的。

In this thesis, two digitally controlled linear voltage regulators are proposed for event-driven energy-efficiency sensing platform. Both digitally controlled linear voltage regulators are implemented on TSMC 65-nm low-power bulk CMOS technology and designed for near-/sub- threshold operations.
The first digitally controlled linear voltage regulator includes a digital error detector (DED), which is the replacement of the analog error amplifier. A novel Process-Voltage-Temperature (PVT) –aware design is implemented to mitigate environmental variations and to guarantee the resolution of linear voltage regulator.
In the second digitally controlled linear voltage regulator, a comparator-based error detector is proposed to replace analog error amplifier. Two methods are introduced to reduce self-generated output ripple by adjusting the PMOS strength for PVT and load variations.

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Research Goal and Major Contributions 2
1.3 Organization 4
Chapter 2 Overview of DC-DC Converter 6
2.1 Introduction 6
2.2 Categories of DC-DC Converters 7
2.2.1 Switched Capacitor 8
2.2.2 Switching Regulator 9
2.2.3 Linear Voltage Regulator 14
2.2.4 Comparison of DC-DC Converters 17
2.2.5 Benefit of Integrated Voltage Regulator 18
2.2.6 DC-DC Converters with Hybrid Operation 19
2.3 Digitally Controlled Low-dropout Voltage Regulator 21
2.4 The Terms and the Definitions of Low-dropout Voltage Regulator 23
2.4.1 Dropout Voltage 23
2.4.2 Quiescent Current 24
2.4.3 Standby Current 26
2.4.4 Power Efficiency 26
2.4.5 Transient Response 26
2.4.6 Line Regulation 27
2.4.6 Load Regulation 28
2.4.7 Power Supply Rejection 28
2.5 Summary 29
Chapter 3 PVT-Aware Digitally Controlled Linear Voltage Regulator 31
3.1 System Architecture of Proposed Digitally Controlled Linear Voltage Regulator 32
3.1.1 Function Work of PVT-aware Digital Error Detector 33
3.1.2 Control Logic and Push/Pull Devices 34
3.2 Digital Error Detector without PVT Compensation 35
3.2.1 Simulation Results of Digital Error Detector without PVT Compensation 36
3.3 PVT-Aware Digital Error Detector 38
3.3.1 PVT Sensor 38
3.3.2 Phase Detector 40
3.3.3 Compensation Circuits 41
3.3.4 Simulation Results of PVT-Aware DED 43
3.4 Experimental Results of Proposed PVT-Aware Digitally Controlled Linear Voltage Regulator 45
3.5 Summary 51
Chapter 4 All Digitally Controlled Linear Voltage Regulator with PMOS Strength Self-Calibration 52
4.1 System Architecture of Proposed Digitally Controlled Linear Voltage Regulator 53
4.2 Comparator-Based Error Detector and Voltage Divider 54
4.3 Mechanism of Control Logic and Grouped Push Devices 57
4.4 Mechanism of PMOS Strength Calibration 60
4.4.1 Analysis of Current Driving Capability of Active Power PMOSs Corresponding to Q[1:6] for PVT Variations 61
4.4.2 Circuit Used to Adjust Ripple Reduction Signal Q[1:6] 63
4.4.3 First Method (Coarse-Tune Ripple Reduction) 64
4.4.4 Second Method (Fine-Tune Ripple Reduction) 66
4.4.5 Summary of Mechanism of Ripple Reduction 71
4.5 Summary 72
Chapter 5 Design Implementation and Analysis of 0.6V Input Voltage All Digitally Controlled Linear Voltage Regulator 73
5.1 Performance of Proposed Digitally Controlled Linear Voltage Regulator 74
5.1.1 Start-up Transient Response 74
5.1.2 Load Transient Response 75
5.1.3 Response Time for Dynamic Voltage Scaling 76
5.1.4 Quiescent Current and Current Efficiency 79
5.2 Performance Comparison with Precious Works 81
5.2.1 Previous Works of Low Input Voltage Digitally Controlled Linear Voltage Regulators 81
5.2.2 Performance Comparison 83
5.3 Summary 84
Chapter 6 Conclusions and Future Work 85
6.1 Conclusions 85
6.2 Future Work 85
Reference 87


Chapter 1
G. Chen, S. Hanson, D. Blaasuw, and D. Sylvester, "Circuit Design Advances for wireless Sensing Applications," Proc. IEEE, vol. 98, no. 11, pp.1808 – 1827, Nov. 2010
Samsung Tips $100 million IOT Strategy, EE Times 11/11/2013
Wireless Sensor Networks – A market Research Report, August 2009
G. Li, Y.M. Tousi, A. Hassibi, and E. Afshari, "Delay-Line-Based Analog-to-Digital Converters," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 6, pp.464 – 468, June 2009
Chapter 2
H-H. Ko, "A High Efficiency Synchronous CMOS Switching Buck Regulator with Accurate Current Sensing Technique," Master thesis, Electrical Engineering, National Central University, Taiwan, Oct. 2007
National Semiconductor,“Power,”High-Performance Analog Seminar 2007.
M. X. Lu, B. H. Hwang, J. J. Chen, Y. S. Hwang,“A sub-1V voltage-mode DC-DC buck converter using PWM control technique,” IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp. 1–4, Dec. 2010.
J. Xiao, A.V. Peterchev, J. Zhang and S.R. Sanders,“A 4-uA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2342–2348, Dec. 2004.
R. W. Ericson and D. Maksimovic, Fundamentals of power electronics, 2^nd edition, John Wiley, New York, 1950.
E. Alon, and M. Horowitz, "Integrated Regulation for Energy-Efficient Digital Circuits," IEEE J. Solid-State Circuits,vol.43, no.8, pp.1795-1807, Aug. 2008
G. A. Rincon-Mora and P. E. Allen, “Study and Design of Low Drop-Out Regulators,”Sch. Elect. Comput. Eng., Georgia Inst. Technol., Atlanta, GA.
G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, low drop-out regulator," IEEE J. Solid-State Circuits, vol.33, no.1, pp.36-44, Jan. 1998
W. Kim, M.S. Gupta, G.-Y. Wei, and D. Brooks, "System level analysis of fast, per-core DVFS using on-chip switching regulators," IEEE Int. Symp. High Performance Computer Architecture, pp.123-134, Feb. 2008
H. W. Huang, K. H. Chen, and S. Y. Kuo, "Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications," IEEE J. Solid-State Circuits, vol. 42, no.11, pp.2451-2465, Nov. 2007.
K. H. Chen, C. J. Chang, T. H. Liu, "Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation," IEEE Trans. Power Electronics, vol.23, no.1, pp.180-188, Jan. 2008.
Y. H. Lee, S. Y. Peng, C. C. Chiu, K. H. Chen, Y. H. Lin, S. W. Wang, T. Y. Tsai, C. C. Huang, and C. C. Lee, "A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement," IEEE J. Solid-State Circuits, vol.48, no.4, pp.1018-1030, April 2013.
Kisun Lee, F. C. Lee, Jia Wei, and Ming Xu, "Analysis and Design of Adaptive Bus Voltage Positioning System for Two-Stage Voltage Regulators," IEEE Trans. Power Electronics, vol.24, no.12, pp.2735-2745, Dec. 2009.
A. Barrado, R. Vazquez, E. Olias, A. Lazaro, J. Pleite, "Theoretical study and implementation of a fast transient response hybrid power supply," IEEE Trans. Power Electronics, vol.19, no.4, pp.1003-1009, July 2004.
T. W. Kwak, M. C. Lee, G. H. Cho, "A 2 W CMOS Hybrid Switching Amplitude Modulator for EDGE Polar Transmitters," IEEE J. Solid-State Circuits, vol.42, no.12, pp.2666-2676, Dec. 2007.
L. L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin, “Analog circuit design in nanoscale CMOS technologies,” Proc. IEEE, vol. 97, no. 10, pp. 1687–1714, Oct. 2009.
B. Murmann, “Digitally assisted analog circuits,” IEEE Micro, vol. 26, no. 2, pp. 38–47, Mar.-Apr. 2006.
Gangopadhyay S, Youngtak Lee, A. Raychowdhury, "Modeling and analysis of digital linear dropout regulators with adaptive control for high efficiency under wide dynamic range digital loads," Design, Automation and Test in Europe Conference and Exhibition (DATE), pp.1-6, March 2014
Texas Instruments,“Understanding the Terms and Definitions of LDO Voltage Regulators,”Mixed Signal Products Oct. 1999.
Chapter 3
[3.1] Y. Okuma, K. Ishida, Y. Ryu, X. Zhang, P.-H. Chen, K. Watanabe, M. Takamiya, and T. Sakurai, “0.5-V input digital LDO with 98.7% current efficiency and 2.7-μA quiescent current in 65nm CMOS,” IEEE Custom Integrated Circuits Conf. (CICC), pp. 1–4, Sep. 2010.
[3.2] Y. Kim, and P. Li, "A 0.38V near/sub- VT digitally controlled low-dropout regulator with enhanced power supply noise rejection in 90nm CMOS process," IET Circuit, Devices & Systems, vol. 7, no. 1, pp.31 - 41, Jan 2013
[3.3] K. Otsuga, M. Onouchi, Y. Igarashi, T. Ikeya, S. Morita, K. Ishibashi, and K. Yanagisawa, "An on-chip 250 mA 40 nm CMOS digital LDO using dynamic sampling clock frequency scaling with offset-free TDC-based voltage sensor," IEEE International SOC Conference (SOCC), pp.11-14, Sept. 2012
[3.4] J.-H. Wang, C.-H. Tsai, and S.-W Lai, "A Low-Dropout Regulator With Tail Current Control for DPWM Clock Correction," IEEE Transactions on Circuits and Systems II: Express Briefs, vol.59, no.1, pp.45-49, Jan. 2012
[3.5] W.-C. Hsieh, and W. Hwang, "All Digital Linear Voltage Regulator for Super- to Near-Threshold Operation," IEEE Trans. VLSI Syst., vol.20, no.6, pp.989-1001, June 2012
[3.6] P.-C. Wu, Y.-P. Kuo, C.-S. Wu, C.-T. Chuang and W. Hwang, "PVT – Aware Digitally Controlled Voltage Regulator Design for Ultra-Low-Power (ULP) DVFS Systems," IEEE International SOC Conference (SOCC), Sept. 2014

Chapter 4
[4.1] J.F. Bulzacchelli, Z. Toprak-Deniz, T.M. Rasmus, J.A. Iadanza, W.L. Bucossi, Kim Seongwon, R. Blanco, C.E. Cox, M. Chhabra, C.D. LeBlanc, C.L. Trudeau, and D.J. Friedman, "Dual-Loop System of Distributed Microregulators With High DC Accuracy Load Response Time Below 500ps, and 85-mV Dropout Voltage," IEEE J. Solid-State Circuits, vol.47, no.4, pp.863-874, April. 2012
[4.2] Z. Toprak-Deniz, J.F. Bulzacchelli, T.M. Rasmus, J.A. Iadanza, W.L. Bucossi, Kim Seongwon, R. Blanco, C.E. Cox, M. Chhabra, C.D. LeBlanc, C.L. Trudeau, and D.J. Friedman, " Dual-Loop System of Distributed Microregulators With High DC Accuracy Load Response Time Below 500ps, and 85-mV Dropout Voltage," Symposium on VLSI Circuits, pp.274-275, June. 2011
[4.3] Z. Toprak-Deniz, M. Sperling, J.F. Bulzacchelli, G. Still, R. Kruse, Kim Seongwon, D. Boerstler, T. Gloekler, R. Robertazzi, K. Stawiasz, and T. Diemoz, " Distributed system of digitally controlled microregulators enabling pre-core DVFS for the POWER8TM microprocessor," International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.98-99, Feb. 2014

Chapter 5
[5.1] Y. Okuma, K. Ishida, Y. Ryu, X. Zhang, P.-H. Chen, K. Watanabe, M. Takamiya, and T. Sakurai, “0.5-V input digital LDO with 98.7% current efficiency and 2.7-μA quiescent current in 65nm CMOS,” IEEE Custom Integrated Circuits Conf. (CICC), pp. 1–4, Sep. 2010.
[5.2] Y. Kim, and P. Li, "A 0.38V near/sub- VT digitally controlled low-dropout regulator with enhanced power supply noise rejection in 90nm CMOS process," IET Circuit, Devices & Systems, vol. 7, no. 1, pp.31 - 41, Jan 2013
[5.3] W.-C. Hsieh, and W. Hwang, "All Digital Linear Voltage Regulator for Super- to Near-Threshold Operation," IEEE Trans. VLSI Syst., vol.20, no.6, pp.989-1001, June 2012
[5.4] P.-C. Wu, Y.-P. Kuo, C.-S. Wu, C.-T. Chuang and W. Hwang, "PVT – Aware Digitally Controlled Voltage Regulator Design for Ultra-Low-Power (ULP) DVFS Systems," IEEE International SOC Conference (SOCC), Sept. 2014
[5.5] J.F. Bulzacchelli, Z. Toprak-Deniz, T.M. Rasmus, J.A. Iadanza, W.L. Bucossi, Kim Seongwon, R. Blanco, C.E. Cox, M. Chhabra, C.D. LeBlanc, C.L. Trudeau, and D.J. Friedman, "Dual-Loop System of Distributed Microregulators With High DC Accuracy Load Response Time Below 500ps, and 85-mV Dropout Voltage," IEEE J. Solid-State Circuits, vol.47, no.4, pp.863-874, April. 2012

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top