跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅梓宏
研究生(外文):Tzu-Hung Lo
論文名稱:醋酸纖維素/二氧化鈦奈米顆粒混合基材薄膜應用於二氧化碳和甲烷的分離
論文名稱(外文):Separation of CO2 and CH4 Using Cellulose Acetate/TiO2 Nanoparticle Mixed Matrix Membranes
指導教授:孫幸宜
口試委員:林智汶李榮和
口試日期:2012-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:49
中文關鍵詞:混合基材薄膜醋酸纖維素二氧化鈦氣體分離
外文關鍵詞:Mixed matrix membraneCellulose acetateTitanium dioxideGas separation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用醋酸纖維素(cellulose acetate, CA)和摻入無機填料(球形奈米 Titanium dioxide, TiO2)製備為混合基材薄膜(MMMs),由此產生的混合基材薄膜,進行TGA,DSC,SEM和TEM薄膜結構分析。結果發現,當混合基材薄膜於高含量( ≥ 3wt.%)無機填料時,聚集變得更加嚴重。製備CA/TiO2 混合基材薄膜,進行CO2和CH4 的氣體滲透。 CO2/CH4選擇性增加,從15.87(純CA膜)變成為最高值34.30的1 wt.% TiO2混合基材薄膜,當二氧化鈦含量大於1 wt.%時,選擇率則減少。薄膜型態可分為兩種情形:理想型態( ≤ 2 wt.%) 和 界面孔洞型態( > 2 wt.%) 。高分子與奈米顆粒間產生孔洞和混合基材薄膜的缺陷的形成,導致氣體滲透率上升和氣體的選擇性下降的情形。

Cellulose acetate (CA)-based mixed matrix membranes (MMMs) with the incorporation of inorganic fillers (spherical Titanium dioxide, TiO2 nanoparticles) were prepared in this study. The resulting MMMs were characterized by TGA, DSC, SEM, and TEM. It was found that inorganic filler agglomeration became more serious at higher-filler-content ( ≥ 3wt.%) MMMs. CO2 and CH4 permeabilities were measured for these prepared CA/TiO2 MMMs. The CO2/CH4 selectivity increased from 15.87 (pure CA membrane) to a maximum value of 34.30 at 1 wt.% TiO2 MMM, and then decreased for the TiO2 weight percentages > 1. The membrane morphology may be divided into two cases : ideal morphology ( ≤ 2 wt.%) and interface voids ( > 2 wt.%). The formation of interface voids and membrane defects in MMMs contributed to higher gas permeabilities but lower gas selectivity.

誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
第二章 文獻回顧 3
2-1薄膜基本簡介 3
2-2 高分子薄膜介紹 4
2-3 氣體分離膜應用與介紹 4
2-4 無機奈米顆粒添加於高分子膜中應用 11
2-5 利用相關公式來預測氣體滲透率 17
2-6 文獻總結 20
第三章 實驗方法 22
3-1 實驗藥品 22
3-2 實驗用氣體 22
3-3 實驗方法 22
3-4 摻混奈米顆粒薄膜的性質量測 23
3-5 摻混奈米顆粒薄膜的氣體滲透實驗 24
第四章 結果與討論 28
4-1 CA和CA/TiO2 摻混薄膜的性質討論 28
4-1-1 薄膜厚度 28
4-1-2 熱重損失分析結果 28
4-1-3微分掃瞄熱量計分析結果 29
4-1-4場發射掃描電子顯微鏡(SEM)分析結果 30
4-1-5穿透式電子顯微鏡(TEM)分析結果 30
4-2 CA和CA/TiO2摻混奈米顆粒薄膜的氣體滲透結果 31
4-3 Robeson’s upper bounds的比較 33
第五章 結論 44
第六章 參考文獻 45


[1] A. Car, C. Stropnik, W. Yave, K. V. Peinemann, PebaxR/polyethylene glycol
blend thin film composite membranes for CO2 separation: Performance with
mixed gases. Separation and Purification Technology 62 (2008) 110–117.

[2] S. R. Reijerkerk, M. H. Knoef, K. Nijmeijer, M. Wessling, Poly(ethylene
glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2
gas separation membranes. Journal of Membrane Science 352 (2010) 126-135.

[3] 翁子翔,高分子薄膜與多層複合薄膜氣體氣體分離特性之研究,中興大學
環境工程研究所,博士學位論文,(2010)。

[4] T. Graham, On the absorption and dialytic separation of gases by colloid septa.
Philosophical Transactions (1866).

[5] S. A. Stern, Polymers for gas separation : the next decade. Journal of Membrane
Science (1994) 1-65.

[6] C. Staudt-Bickel, W. J. Koros, Improvement of CO2/CH4 separation
Characteristics of polyimides by chemical crosslinking. Journal of Membrane
Science 155 (1999) 145-154.

[7] S. Sridhar , R. Suryamurali , B. Smitha , T.M. Aminabhav, Development of
crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids
and Surfaces A: Physicochem. Eng. Aspects 297 (2007) 267-274.

[8] 郭文正、曾添文 ,薄膜分離,高立圖書有限公司出版, (1988)。

[9] 劉得成,PMMA/ zeolite 4A 複合薄膜之氣體分離,中原大學,化學工程學系,
碩士學位論文,(2004)。

[10] Z. Wang , T. Chen , J. Xu , Novel Poly(aryl ether ketone) s Containing
Various Pendant Groups. II. Gas-Transport Properties. Journal of Applied
Polymer Science 64 (1997) 1725-1732.
[11] C. A. Scholes, S. E. Kentish, G. W. Stevens, Carbon Dioxide Separation
through Polymeric Membrane Systems for Flue Gas Applications. Recent Patents
on Chemical Engineering 1 (2008) 52-66.

[12] P. Bernardo, E. Drioli, G. Golemme, Membrane Gas Separation: A Review/State of the Art. Industrial and Engineering Chemistry Research 48 (2009) 4638-4663.

[13] S. Basu, A. C. Odena, I. F. J. Vankelecom, Asymmetric Matrimid
/[Cu3(BTC)2] mixed-matrix membranes for gas separations. Journal of Membrane Science 362 (2010) 478-487.

[14] A. B. Koltuniewic, E. Drioli( Eds.), Membrane in Clean Technology.
Theory and Practice. Weinheim, 2008.

[15] R.W. Baker, Membrane Technology and Applications. 2nd Ed. Wiley (2004).

[16] Y. Yampolskii, B. Freeman(Eds.), Membrane gas separation. Wiley (2010).

[17] Y. Yampolskii, I. Pinnau, B. Freeman(Eds.), Materials Science of
Membranes for Gas and Vapor Separation. Wiley (2006).

[18] R.W. Baker, K. Lokhandwala, Natural Gas Processing with Membranes: An Overview. Industrial and Engineering Chemistry Research 47 (2008) 2109-2121.

[19] C.Y. Liang, P. Uchytil, R. Petrychkovych, Y.C. Lai, K, Friess, M. Sipek,
M.M. Reddy, S.Y. Suen, A comparison on gas separation between PES
(polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix
membranes. Separation Purification Technology (2012)

[20] L. M. Robeson, Correlation of separation factor versus permeability for
polymeric membranes. Journal of Membrane Science 62 (1991) 165-185.

[21] L. M. Robeson, The upper bound revisited. Journal of Membrane Science
320 (2008) 390-400.

[22] M. Sadeghi, M. A. Semsarzadeh, H. Moadel, Enhancement of the gas separation
properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. Journal of Membrane Science 331 (2009) 21–30

[23] M. Anson, J. Marchese, E. Garis, N. Ochoa, C. Pagliero, ABS copolymer-
activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science. 243 (2004) 19-28.

[24] M. Sadeghi, G. Khanbabaei, A. H. S. Dehaghani, M. Sadeghi, M. A. Aravand, M. Akbarzade, S. Khatti, Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. Journal of Membrane Science. 322 (2008) 423-428.

[25] D. Şen, H. Kalıpcılar, L. Yilmaz, Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes. Journal of Membrane Science. 303 (2007) 194-203.

[26] E. Karatay, H. Kalıpcılar, L. Yılmaz, Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes. Journal of Membrane Science. 364 (2010) 75-81.

[27] B. Zornozaa, O. Esekhileb, W. J. Korosb, C. Telleza, J. Coronasa, Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation. Separation Purification Technology. 77 (2011) 137-145.

[28] S. S. Hosseini, Y. Lia, T.-S. Chung, Y. Liu, Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science. 302 (2007) 207-217.

[29] M.A. Aroon, A.F. Ismail, M.M. Montazer-Rahmatia, T. Matsuura, Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes. Journal of Membrane Science. 364 (2010) 309-317.

[30] F. Moghadam, M.R. Omidkhah, E. Vasheghani-Farahani, M.Z. Pedram, F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation Purification Technology. 77 (2011) 128-136.
[31] J. Ahn, W. J. Chung, I. Pinnau, M. D. Guiver, Polysulfone/silica
nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane
Science. 314 (2008) 123-133.

[32] 方貞凱,以polysulfone 製備離子交換薄膜及其在蛋白質分離上之應用,中
興大學化學工程研究所,碩士學位論文,(2001)。

[33] M.A. Aroon, A.F. Ismailb, T. Matsuura, M.M. Montazer-Rahmati,
Performance studies of mixed matrix membranes for gas separation: A review.
Separation Purification Technology. 75 (2010) 229-242.

[34] S.A. Hashemifard, A.F. Ismail, T. Matsuura, Effects of montmorillonite
nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chemical
Engineering Journal. 170 (2011) 316-325.

[35] J. Ahn, W. J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, M. D. Guiver,
Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). Journal of Membrane Science 346 (2010) 280–287.

[36] Y. Li , H. M. Guan, T. S. Chung, S. Kulprathipanja, Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes. Journal of Membrane Science 275 (2006) 17–28.

[37] T.S. Chung, L. Y. Jiang, Y. Li, S. Kulprathipanj, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science 32 (2007) 483–507.

[38] S. Matteucci, V. A. Kusuma, D. Sanders, Steve Swinnea, Benny D. Freeman, Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne). Journal of Membrane Science 307 (2008) 196–217.

[39] R. Morita, F. Z. Khan, T. Sakaguchi, M. Shiotsuki, Y. Nishio, T. Masuda, Synthesis, characterization, and gas permeation properties of the silyl derivatives of cellulose acetate. Journal of Membrane Science 305 (2007) 136–145.
[40] M. G. Wang, S. H. Zhong, Preparation, Characterization, and Gas Separation Properties of Polyimide/TiO2 Composite Membranes. Journal of Inorganic Materials 22 (2007) 148-152.

[41] V. Bhardwaj, A. Macintosah, I. D. Sharpe, S.A. Gordeyve, S. J. Shilton, Polysulfone Hollow Fiber Gas Separation Membranes Filled with Submicron Particles. Annals of the New York Academy of Sciences 984 (2003) 318-328.

[42] Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, W. Xin, Study on polyimide/TiO2 nanocomposite membranes for gas separation. Desalination 146 (2002) 49–55.

[43] Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, G. Wilkes, Poly(amide-
imide) /TiO2 nano-composite gas separation membranes : Fabrication and characterization. Journal of Membrane Science 135 (1997) 65-79.

[44] R. Abedini, S. M. Mousavi, R. Aminzadeh, A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: Preparation, characterization and permeation study. Desalination 277 (2011) 40–45.

[45] H. Cong, M. Radosz, B. F. Towler, Y. Shen, Polymer–inorganic nanocomposite membranes for gas separation. Separation Purification Technology. 55 (2007) 281-291.

[46] B. Zornoza, C. Tellez, J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science 368 (2011) 100–109.

[47] http://www20.inetba.com/ishiharacorpusa/item416087.ctlg

[48] http://www.sigmaaldrich.com/catalog/product/aldrich/22190?lang=enRion=TW

[49] M.D. Donohue, B.S. Minhas, S.Y. Lee, Permeation behavior of carbon dioxide-
methane mixtures in cellulose acetate membranes. Journal of Membrane Science 42 (1989) 197–214.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊