跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃郁雯
研究生(外文):Huang, Yu-Wen
論文名稱:新穎多晶矽奈米線場效電晶體於人類血清攝護腺特異抗原之免標定即時偵測
論文名稱(外文):Real-Time and Label-Free Detection of the Prostate-Specific Antigen in Human Serum by a Novel Poly-silicon Nanowire-FET Biosensor
指導教授:柯富祥柯富祥引用關係
指導教授(外文):Ko, Fuh-Siang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:74
中文關鍵詞:生物感測器多晶矽奈米線場效電晶體癌症標誌物偵測
外文關鍵詞:BiosensorPoly-crystalline silicon nanowireField-effect transistorCancer marker detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
應用場效電晶體 (field-effect transistor, FET) 偵測生物分子,在疾病診斷與預防醫學等領域為一門具有發展潛力之新穎科技。在此研究中,我們主要利用簡單且價格低廉的半導體製程技術製作奈米線場效電晶體,藉由側壁蝕刻技術 (sidewall spacer technology) 取代傳統昂貴的電子束微影 (E-beam lithography) 製作多晶矽奈米線場效電晶體作為生物感測器,運用其即時偵測、免標定且高敏感度等特性,用於偵測人類血清中的攝護腺特異抗原 (prostate-specific antigen, PSA)。我們首先利用自組裝技術將3-aminopropyltriethoxysilane (APTES) 修飾於silicon oxide表面,接上glutaraldehyde作為連結之後,再與所要偵測之抗原相對應的抗體鍵結,在適當的pH值以及離子強度之下,結合微流道系統,其偵測極限可達5 fg/mL。由於血清中的成分極為複雜,含有高濃度的鹽類及其他干擾因子,為了將此系統應用到人類血清之中,我們發展了一套標準作業流程來處理真實檢體以維持去鹽血清在適當的pH值及離子強度,並且利用Tween 20修飾在奈米線上排除血清中非特異性的靜電吸附以達到醫療診斷上之應用。在未來的應用上,此新穎多晶矽奈米線場效電晶體在監控癌症及預後追蹤上皆為極具發展潛
力之偵測平台。

The application for disease diagnosis and recurrence prevention of high-sensitive field-effect transistor devices in detecting the biomolecules is a novel and developing technology. In this research, we used poly-silicon nanowire field-effect transistor (poly-Si NWFET) as biosensor which was fabricated by employing the sidewall spacer technique instead of expensive E-beam lithography method. The sidewall spacer technique has the advantages of simplicity and low-cost, comparing to the current commercial semiconductor process. By using these novel devices which exhibited characteristics of real-time, label-free and ultrahigh-sensitive, we could detect prostate-specific antigen (PSA) in human serum in this thesis. We firstly modified 3-aminopropyltriethoxysilane (APTES) on the silicon oxide surface followed by glutaraldehyde functionalized, and the PSA antibodies were immobilized on the aldehyde terminal. While PSA were prepared in the buffers maintaining appropriate pH values and ionic strength, the results indicated that the sensor could detect trace PSA which was down to 5 fg/mL in a micro-fluidic channel. Since serum proteome is very complex containing high levels of salts and other interfering compounds, we hereby developed a standard operating procedure for real sample pretreatment to keep a proper pH and ionic strength of the desalted serum, and also utilized Tween 20 serving as the passivation agent by surface modification on the nanowire to reduce non-specific binding for medical diagnostic applications. The novel poly-silicon nanowire field-effect transistor as diagnostic platform for monitoring cancer therapy and predicting the risk of early biochemical relapse is potential and developed in the future.
Chapter 1: Introduction 1
1.1 General introduction 1
1.2 Prostate-specific antigen 3
1.3 Biosensors 5
1.4 Nanowire field-effect transistor biosensors 8
1.5 Serum proteome 12

Chapter 2: Literatures Review 14
2.1 Literature of bioFET sensors 14
2.2 Real-time nanowire field-effect transistor biosensors 23
2.3 Impacts of buffer to the nanowire field-effect transistor system 28
2.3.1 Effect of buffer pH 28
2.3.2 Effect of Debye length 30
2.4 Thesis motivation 32

Chapter 3: Experiment Design and Materials 34
3.1 Materials 34
3.2 Experimental procedure 34
3.3 Fabrication of poly-silicon nanowire field-effect transistor 34
3.4 Self-assembly of biomolecules on poly-Si NWFET device 36
3.5 Modification of fluorescence-labeled antibody 38
3.6 Micro-fluidic channel system 38
3.7 Preparation and standard operating procedure of the human serum
39

Chapter 4: Results and Discussion 41
4.1 Physical and electrical properties of the poly-silicon
nanowire field-effect transistor 41
4.2 Real-time detection of buffer pH 46
4.3 Surface modification 48
4.3.1 Immobilization of fluorescence-IgG on silicon oxide surface 48
4.3.2 ESCA analysis 49
4.4 Real-time detection of prostate-specific antigen 53
4.4.1 Electric responses of PSA in various pH buffers 53
4.4.2 PSA detection with various ions concentrations 57
4.5 Determination of the specificity sensing 59
4.6 Detection the human serum 60
4.6.1 Optimal conditions for human serum processing 60
4.6.2 Electric response of the nanowire sensor in detecting PSA
in human serum 65

Chapter 5: Conclusions and Futrure Work 68

References 69
[1] World Health Organization [online]. Available: http://www.who.int/en/
[2] The Department of Health, Executive Yuan, R.O.C. [online]. Available: http://www.doh.gov.tw/cht2006/index_populace.aspx
[3] R. Siegel, D. Naishadham, and A. Jemal, CA Cancer J Clin. 2012, 62, 10–29
[4] H. Gronberg, Lancet 2003, 361, 859–864
[5] B. Marc and Garnick, Ann Intern Med. 1993, 118, 804–818
[6] R. Etzioni, J. M. Legler, E. J. Feuer, R. M. Merrill, K. A. Cronin, and B. F. Hankey, Cancer Causes and Control 1998, 9, 519–527
[7] G. L. Lu-Yao and E. R. Greenberg, Lancet 1994, 343, 251–254
[8] A. L. Potosky, B. A. Miller, P. C. Albertsen, and B. S. Kramer, JAMA. 1995, 273, 548–552
[9] W. J. Catalona, D. S. Smith, T. L. Ratliff, K. M. Dodds, D. E. Coplen, J. J. Yan, J. A. Petros, and G. L. Andriole, N Engl J Med. 1991, 324, 1156–1161
[10] J. E. Oesterling, S. J. Jacobsen, C. G. Chute, H. A. Guess, C. J. Girman, L. A. Panser, and M. M. Liber, J Urol. 1991, 145, 907–923
[11] M. C. Benson, I. S. Whang, C. A. Olsson, D. J. McMahon, and W. H. Cooner, J Urol. 1992, 147, 817–821
[12] W. J. Catalona, J. P. Richie, J. B. deKernion, F. R. Ahmann, T. L. Ratliff, B. L. Dalkin, L. R. Kavoussi, M. T. MacFarlane, and P. C. Southwick, J Urol. 1994, 152, 2031–2036
[13] G. F. Carvalhal, D. S. Smith, D. E. Mager, C. Ramos, and W. J. Catalona, J Urol. 1999, 161, 835–839
[14] W. J. Catalona, A. W. Partin, K. M. Slawin, M. K. Brawer, R. C. Flanigan, A. Patel, J. P. Richie, J. B. deKernion, P. C. Walsh, P. T. Scardino, P. H. Lange, E. N. Subong, R. E. Parson, G. H. Gasior, K. G. Loveland, and P. C. Southwick, JAMA. 1998, 279, 1542–1547
[15] Mens Hormonal Health
[online] Available: http://www.mens-hormonal-health.com/
[16] Pacific Naturopathic [online] Available: http://www.pacificnaturopathic.com/
[17] [online] Available: http://yuanadesukma.wordpress.com/
[18] B. Nagel, H. Dellweg, and L. M. Gierasch, Pure Appl. Chem. 1992, 64, 143–168
[19] D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, Biosens Bioelectron. 1999, 14, 599–624
[20] J. J. Cecilia, O. Jahir, and B. Antoni, Sensors 2010, 10, 61–83
[21] L. C. Clark and C. Lyons, Ann. NY Acad. Sci. 1962, 102, 29–45
[22] Japan Advanced Institute of Science and Technology
[online] Available: http://www.jaist.ac.jp/index-j2.shtml
[23] F. Patolsky, G. Zheng, and C. M. Liber, Nat. Protoc. 2006, 1, 1711–1724
[24] S. Ray, G. Mehta, and S. Srivastava, Proteomics 2010, 10, 731–748
[25] D. J. Brennan, S. L. O’Brien, A. Fagan, A. C. Culhane, D. G. Higgins, M. J. Duffy, and W. M. Gallagher, Expert Opin. Biol. Ther. 2005, 5, 1069–1083
[26] Y. Liu-Stratton, S. Roy, and C. K. Sen, Toxicol Lett. 2004, 150, 29–42
[27] A. M. Ward, J. W. F. Catto, and F. C. Hamdy, Ann Clin Biochem. 2001, 38, 633–651
[28] R. Rich and D. G. Myszka, Curr. Opin. Biotechnol. 2000, 11, 54–61
[29] N. Kim, D. K. Kim, and Y. J. Cho, Sensor. Actuat. B-Chem. 2009, 143, 444–448
[30] N. Backmann, C. Zahnd, F. Huber, A. Bietsch, A. Pluckthun, H. P. Lang, H. J. Güntherodt, M. Hegner, and C. Gerber, Proc. Natl Acad. Sci. 2005, 102, 14587–14952
[31] P. S. Waggoner, M. Varshney, and H. G. Craighead, Lab Chip 2009, 9, 3095–3099
[32] G. Zheng, X. P. A. Gao, and C. M. Liber, Nano Lett. 2010, 10, 547–552
[33] J. L. Arlett, E. B. Myers, and M. L. Roukes, Nat. Nanotechnol. 2011, 6, 203–215
[34] X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, Anal. Biochem. 2006, 354, 220–228
[35] M. S. Luchansky and R. C. Bailey, Anal. Chem. 2010, 82, 1975–1981
[36] A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, Anal. Chem. 2010, 82, 69–72
[37] R. Lipsitz, Sci. Amer. 2000, 283, 110–111
[38] S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, Lab Chip 2004, 4, 563–569
[39] A. H. Diercks, A. Ozinsky, C. L. Hansen, J. M. Spotts, D. J. Rodrifuez, and A. Aderem, Anal. Biochem. 2009, 386, 30–35
[40] E. D. Goluch, J. M. Nam, D. G. Georganopoulou, T. N. Chiesl, K. A. Shaikh, K. S. Ryu, A. E. Barron, C. A. Mirkin, and C. Liu, Lab Chip 2006, 6, 1293–1299
[41] M. G. von Muhlen, N. D. Brault, S. M. Kundsen, S. Jiang, and S. R. Manalis, Anal. Chem. 2010, 82, 1905–1910
[42] Y. Weizmann, F. Patolsky, and I. Willner, Analyst 2001, 126, 1502–1504
[43] Circuitstoday.com [online] Available: http://www.circuitstoday.com/
[44] D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, Sensors 2008, 8, 1400–1458
[45] D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, Biosens Bioelectron. 2001, 16, 121–131
[46] K. I. Chen, B. R. Li, and Y. T. Cheng, Nano Today 2011, 6, 131–154
[47] M. P. Ebert, M. Korc, P. Malfertheiner, and C. Röcken, J. Proteome Res. 2006, 5, 19–25
[48] S. Ray, P. J. Reddy, R. Jain, K. Gollapalli, A. Moiyadi, and S. Srivastava, Proteomics 2011, 11, 2139–2161
[49] N. L. Anderson and N. G. Anderson, Mol. Cell. Proteomics 2002, 1, 845–867
[50] ISI Web of Knowledge [online] Available: http://isiknowledge.com/
[51] Medgadget [online] Available: http://medgadget.com/
[52] National Academy of Engineering
[online] Available: http://www.nae.edu/Home.aspx
[53] M. J. Schoning and A. Poghossian, Analyst 2002, 127, 1137–1151
[54] P. Bergveld, IEEE Trans. Biomed. Eng. 1970, 17, 70–71
[55] F. Patolsky and C. M. Lieber, Materials Today 2005, 8, 20–28
[56] Y. Cui, Q. Wei, H. Park, and C. M. Liber, Science 2001, 293, 1289–1292
[57] J. Hahm and C. M. Lieber, Nano Lett. 2004, 4, 51–54
[58] P. E. Nielsen, M. Egholm, R. H. Berg, and O. Burchardt, Science 1991, 254, 1497–1500
[59] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, Nano Lett. 2004, 4, 245–247
[60] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, Applied Physics A: Materials S. 2005, 80, 1257–1263
[61] W. U. Wang, C. S. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, Proc. Natl. Acad. Sci. USA 2005, 102, 3208–3212
[62] K. Grosios and P. Traxler, Drugs Future 2003, 28, 679–697
[63] Y. Chen, X. H. Wang, S. Erramilli, P. Mohanty, and A. Kalinowski, Appl. Phys. Lett. 2006, 89, 223512–223513
[64] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C.M. Lieber, Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022
[65] C. M. Lieber, Mrs Bulletin 2003, 28, 486–491
[66] G. Zheng, F. Patolsky, Y. Cui, and C. M. Lieber, Nat. Biotechnol. 2005, 23, 1294–1301
[67] J. Lee and M. Shin, J. Korean Phys.Soc 2009, 55, 1621–1625
[68] E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M . A. Reed, Nature 2007, 445, 519–522
[69] A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, Appl. Phys. Lett. 2007, 91, 103901–103903
[70] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, Nano Lett. 2007, 7, 3405–3409
[71] N. M. Green, Methods Enzymol. 1990, 184, 51–67
[72] D. A. Armbruster, Clin. Chem. 1993, 39, 181–195
[73] J. Israelachvili, Intermolecular & Surface Forces, 2nd Ed.; Academic Press: London, 1991.
[74] J. H. Chua, R. E. Chee, A. Agarwal, S. M. Wong, and G. J. Zhang, Anal. Chem. 2009, 81, 6266–6271
[75] C. R. Pound, A. W. Partin, M. A. Eisenberger, D. W. Chan, J. D. Pearson, and P. C. Walsh, JAMA. 1999, 281, 1591–1597
[76] J. F. Pazona, M. Han, S. A. Hawkins, K. A. Roehl, and W. J. Catalona, J Urol. 2005, 174, 1282–1286
[77] H. C. Lin, M. H. Lee, C. J. Su, T. Y. Huang, C. C. Lee, and Y. S. Yang, IEEE Electron Device Lett. 2005, 26, 643–645
[78] C. Y. Hsiao, C. H. Lin, C. H. Hung, F. H. Ko, and Y. S. Yang, Biosens Bioelectron. 2009, 24, 1223–1229
[79] S. Singh, J. Zack, D. Kumar, S. K. Srivastava, Govind, D. Saluja, M. A. Khan, and P. K. Singh, Thin Sol. Films. 2010, 519, 1151–1155
[80] L. Longo, G. Vasapollo, M. Rachele, and C. Malitesta, Anal. Bioanal. Chem. 2006, 385, 146–152
[81] M. J. Ariza, R. Rico, J. Benavente, M. Muñoz, and M. Oleinikova, J. Collid Interface Sci. 2000, 226, 151–158
[82] G. S. Caravajal, D. E. Leyden, G. R. Quinting, and G. E. Maciel, Anal. Chem. 1988, 60, 1776–1786
[83] K. M. R. Kallury, P. M. Macdonald, and M. Thompson, Langmuir 1994, 10, 492–499
[84] H. K. Chang, F. N. Ishikawa, R. Zhang, R. Datar, R. J. Cote, M. E. Thompson, and C. Zhou, ACS Nano 2011, 5, 9883–9891

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊