跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周厚宇
研究生(外文):Hou-Yu Jhou
論文名稱:以計算智慧方法實現影像除霧問題
論文名稱(外文):Image Haze Removal Using Computational Intelligence Methods
指導教授:林正堅林正堅引用關係
指導教授(外文):Cheng-Jian Lin
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:89
中文關鍵詞:除霧模糊推論系統類神經網路濾波器權重
外文關鍵詞:dehazingfuzzy inference systemneural network filterweighted
相關次數:
  • 被引用被引用:0
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在戶外環境中攝影時,空氣中的介質會使光線衰減並更進一步降低影像品質,尤其在濃霧的環境中最為明顯。這些有霧的影像因失去大量的信息造成影像辨識系統無法從影像中辨識目標。為了克服影像品質衰減問題,本篇論文提出兩個影像除霧方法。第一個方法透過提出的模糊推論系統估測出光線衰減的變化,接著使用形態學與設計的類神經網路濾波器來消除光暈,大氣光計算方面透過模糊系統估測出的結果計算出大氣光影像並計算大氣光的顏色向量解決色偏問題。另一個方法則是利用模糊系統估測出不同的衰減結果並透過權重方法結合做計算,在大氣光的估測部分與前面方法相同。最後實驗結果將會與其他方法做比較。
The image quality will be reduced with the light attenuation by atmospheric particles when taking a photograph outdoors, especially in the environment with haze. Because the hazy images lose a lot of information, the image recognition systems cannot recognize the target in the image. In order to solve the problem of the image quality attenuation, there are two image dehazing methods proposed in this paper. To use the proposed fuzzy inference system is able to estimate the attenuation condition of the light. For the problem of the halo artifacts, this paper combines the morphology and the neural network to solve this problem. This paper proposes the average method to calculate the atmospheric light to solve the problem causing by the color cast. The other method is to use the fuzzy inference system to estimate the two different transmission maps which are combined by the weighted method to produce the recovered image. Finally, we demonstrate the experimental results and compare our proposed methods with other existing approaches.
摘要 I
Abstract II
目錄 VI
圖目錄 VIII
表目錄 XI
Chapter 1. 緒論 1
1.1研究動機 1
1.2物理原理 2
1.3文獻探討 5
1.4研究目標 10
1.5章節介紹 12
Chapter 2. 模糊理論與類神經網路之回顧 13
2.1模糊邏輯系統 13
2.2類神經網路 16
Chapter 3. 植基於模糊理論之類神經網路濾波器設計於影像除霧 20
3.1植基於模糊理論之傳輸平面估測 22
3.2以類神經網路濾波器實現光暈現象之消除 26
3.3大氣光顏色向量之均值估測法及影像還原 34
3.4實驗結果 37
3.4.1模糊法則數設計之比較 39
3.4.2比較其他除霧方法 43
Chapter 4. 植基於模糊理論之權重法設計於影像除霧 50
4.1植基於模糊理論之權重法 52
4.2實驗結果 54
4.2.1參數適應性之評估 54
4.2.2比較其他除霧方法 57
Chapter 5. 實驗與討論 64
Chapter 6. 結論與未來工作 67
參考文獻 69
個人資料 75

圖目錄
圖 1真實環境霧氣模型 3
圖 2影像還原結果 6
圖 3影像還原結果 7
圖 4影像還原結果 7
圖 5精煉傳輸平面結果 8
圖 6 引導濾波器 9
圖 7影像還原結果 10
圖 8一般影像除霧方法流程圖 11
圖 9 傳統集合與模糊集合 15
圖 10模糊推論系統 16
圖 11 S型函數曲線圖 18
圖 12類神經網路架構圖 18
圖 13植基於模糊理論之類神經網路濾波器流程圖 21
圖 14傳輸平面之模糊推論系統 22
圖 15模糊歸屬函數 23
圖 16比較遮罩大小 27
圖 17光暈現象 28
圖 18評估光暈結果 29
圖 19消除光暈結果 30
圖 20類神經網路濾波器 31
圖 21類神經網路濾波器學習曲線圖 32
圖 22濾波器輸出結果 33
圖 23計算大氣光影像 34
圖 24大氣光光源估測 36
圖 25模糊法則比較 40
圖 26模糊法則比較 41
圖 27模糊法則比較 42
圖 28比較其他除霧方法 44
圖 29比較其他除霧方法 45
圖 30比較其他除霧方法 46
圖 31比較其他除霧方法 47
圖 32比較其他除霧方法 48
圖 33比較其他除霧方法 49
圖 34植基於模糊理論之權重法流程圖 51
圖 35評估光暈結果 53
圖 36參數比較結果 56
圖 37光暈比較 57
圖 38比較其他除霧方法 58
圖 39比較其他除霧方法 59
圖 40比較其他除霧方法 60
圖 41比較其他除霧方法 61
圖 42比較其他除霧方法 62
圖 43比較其他除霧方法 63
圖 44比較消除光暈結果 65

表目錄
表 1濾波器參數表 32
表 2參數設定表 38
表 3優缺點比較表 66
[1]D. Brulin, Y. Benezeth, and E. Courtial, “Posture Recognition Based on Fuzzy Logic for Home Monitoring of the Elderly,” IEEE Transactions on Information Technology in Biomedicine, Vol. 16, No. 5, pp. 974-982, Sep. 2012.
[2]H.-H. Kim, D.-J. Kim, and K.-H. Park, “Robust Elevator Button Recognition in the Presence of Partial Occlusion and Clutter by Specular Reflections,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 3, pp. 1597-1611, Mar. 2012.
[3]S. Walk, N. Majer, K. Schindler, and B. Schiele, “New Features and Insights for Pedestrian Detection,” Proceeding of the 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1030-1037, Jun. 2010.
[4]J. C. McCall and M. M. Trivedi, “Video-Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation,” IEEE Transactions on Intelligent Transportation Systems, Vol. 7, No. 1, pp. 20-37, Mar. 2006.
[5]S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic Monitoring and Accident Detection at Intersections,” IEEE Transactions on Intelligent Transportation Systems, Vol. 1, No. 2, pp. 108-118, Jun. 2000.
[6]J.-Y. Kim, L.-S. Kim, and S.-H. Hwang, “An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 4, pp. 475-484, Apr. 2001.
[7]G. Deng, “A Generalized Unsharp Masking Algorithm,” EEE Transactions on Image Processing, Vol. 20, No. 5, pp. 1249-1261, May 2011.
[8] X. Bai, “Image enhancement through contrast enlargement using the image regions extracted by multiscale top-hat by reconstruction,” Optik - International Journal for Light and Electron Optics, Vol. 124, No. 20, pp. 4421-4424, Oct. 2013.
[9]S.-J. Ko and Y. H. Lee, “Center Weighted Median Filters and Their Applications to Image Enhancement,” IEEE Transactions on Circuits and Systems, Vol. 38, No. 9, pp. 984-993, Sep. 1991.
[10]Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Instant Dehazing of Images Using Polarization,” Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 325-332, 2001.
[11]S. G. Narasimhan and S. K. Nayar, “Vision and the Atmosphere”, International Journal of Computer Vision, Vol. 48, No. 3, pp. 233-254, 2002
[12]S. G. Narasimhan and S. K. Nayar, “Chromatic Framework for Vision in Bad Weather,” Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 598-605, Jun. 2000.
[13]S. K. Nayar and S. G. Narasimhan “Vision in Bad Weather,” Proceedings of the 1999 Seventh IEEE International Conference on Computer Vision, Vol. 2, pp. 820-827, Sep. 1999.
[14]S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind Haze Separation,” Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 2, pp. 1984-1991, 2006.
[15]R. Fattal, “Single Image Dehazing,” Proceedings of ACM SIGGRAPH 2008, Vol. 27, No. 3, pp. 1-8, Aug. 2008.
[16]R. T. Tan, “Visibility in Bad Weather from a Single Image,” Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, Jun. 2008.
[17]J.-P. Tarel and N. Hautiere, “Fast Visibility Restoration from a Single Color or Gray Level Image,” Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, pp. 2201-2208, Sep. 2009.
[18]K. He, J. Sun, and X. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 12, pp. 2341-2353, Dec. 2011.
[19]A. Levin, D. Lischinski, and Y. Weiss, “A Closed-Form Solution to Natural Image Matting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, No. 2, pp. 228-242, Feb. 2008.
[20]K. He, J. Sun, and X. Tang, “Guided Image Filtering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 6, pp. 1397-1409, Jun. 2013.
[21]D. L. Pham, “Spatial Models for Fuzzy Clustering,” Computer Vision and Image Understanding, Vol. 84, No. 2, pp. 285-297, Nov. 2001.
[22]D. Van De Ville, M. Nachtegael, D. Van der Weken, E. E. Kerre, W. Philips, and I. Lemahieu, “Noise Reduction by Fuzzy Image Filtering,” IEEE Transactions on Fuzzy Systems, Vol. 11, No. 4, pp. 429-436, Aug. 2003.
[23]O. Mendoza, P. Melin, and G. Licea, “A Hybrid Approach for Image Recognition Combining Type-2 Fuzzy Logic, Modular Neural Networks and the Sugeno Integral,” Information Sciences, Vol. 179, No. 13, pp. 2078-2101, Jun. 2009.
[24]D.-L. Peng and T.-J. Wu, “A Generalized Image Enhancement Algorithm Using Fuzzy Sets and Its Application,” Proceedings of the 2002 IEEE Conference on Machine Learning and Cybernetics, Vol. 2, pp. 820-823, Nov. 2002.
[25]J. G. Daugman, “Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 36, No. 7, pp. 1169-1179, Jul. 1988.
[26]Y.-T. Zhou, R. Chellappa, A. Vaid, and B. K. Jenkins, “Image Restoration Using a Neural Network,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, No. 7, pp. 1141-1151, Jul. 1988.
[27]H. A. Rowley, S. Baluja, and T. Kanade. “Neural Network-Based Face Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pp. 23-38, Jan. 1998.
[28]I. Kanellopoulos and G. G. Wilkinson, “Strategies and Best Practice for Neural Network Image Classification,” International Journal of Remote Sensing, Vol. 18, No. 4, pp. 711-725, 1997.
[29]L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, Jun. 1965.
[30]L. A. Zadeh, “Fuzzy logic and the calculus of fuzzy if-then rules,” 22nd International Symposium on Multiple-Valued Logic, IEEE proceedings, May 1992.
[31]王進德,蕭大全,”類神經網路與模糊控制理論入門”,全華科技圖書股份有限公司,Sep. 1994.
[32]J. Long, Z. Shi, W. Tang, and C. Zang, “Single Remote Sensing Image Dehazing, “IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 1, pp. 59-63, Jan. 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top