跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉益彰
研究生(外文):Yi-Chang Liu
論文名稱:利用外來資訊轉換圖設計位元交錯調變碼之迭代解碼系統
論文名稱(外文):On the Design of the BICM-ID Systems with EXIT Chart
指導教授:沈文和
指導教授(外文):Wern-Ho Sheen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:64
中文關鍵詞:位元交錯調變碼之迭代解碼外來資訊轉換圖表位元對應柵欄移除穿刺
外文關鍵詞:BICM-IDEXIT chartLagelingTrellis pruningPuncturing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
外來資訊轉換圖是一個在迭代解碼系統中很好的分析解碼收斂行為的工具,在位元交錯調變碼的解碼系統中,位元對應的設計對於提升系統效能是非常重要的,藉由不同的平均位元差異數來改變訊號偵測器轉換曲線的斜率,因而從中選出一個最適合外部碼的位元對應方式。我們說明了這樣的作法的確可以大幅的改善系統效能。在這篇論文中,我們還提出了利用外來資訊轉換圖來設計柵欄移除(trellis-pruned)迴旋碼和穿刺(punctured)迴旋碼在位元交錯調變碼解碼系統中來達到不同的系統需求。
In the bit-interleaved coded modulation systems with iterative decoding (BICM-ID), a good labeling (bit mapping) is one of the key factors that dictate the system performance. In this thesis, Extrinsic Information Transfer (EXIT) chart, a popular tool to analyze the convergence behavior of an iterative decoding system, is employed for the labeling design. By changing the slopes of the detector transfer curves and selecting the most suitable labeling for the outer code, we show that the system performance can be significantly improved. In addition, EXIT chart is employed to design good trellis-pruned and punctured convolutional codes in BICM-ID systems to provide different levels of performance and code rate trade off.
摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
Chapter 2 System Model 4
2.1 Encode 6
2.2 Bit interleaving 6
2.3 Signal mapping 8
Chapter 3 Iterative Decoding of BICM Systems 11
3.1 APP detector 11
3.2 MAP decoder 12
Chapter 4 Extrinsic Information Transfer (EXIT) Charts 17
4.1 Transfer characteristics 18
4.2 Transfer curves simulations 21
4.2.1 Transfer characteristics of the detectors 21
4.2.2 Transfer characteristics of the decoders 24
4.2.3 EXIT chart 25
Chapter 5 Labeling design in BICM-ID systems 27
5.1 Labeling design 27
5.2 Simulation results 37
Chapter 6 Trellis-pruned and Punctured convolutionalcodes 38
6.1 Trellis-pruned convolutional codes 38
6.1.1 Encoding of the trellis-pruned convolutional codes 38
6.1.2 Decoding of the trellis-pruned convolutional codes 39
6.1.3 Decoder transfer characteristics with trellis pruning 41
6.1.4 Performance 43
6.2 Punctured convolutional codes 45
6.2.1 Minimum free distance 46
6.2.1.1 Puncturing design on rate 2/3 codes 47
6.2.1.2 Puncturing design on rate 3/4 codes 49
6.2.2 Puncturing patterns design with EXIT chart 51
6.2.2.1 Rate 2/3 codes 52
6.2.2.1.1 (58,88) convolutional codes 52
6.2.2.1.2 (1338,1718) convolutional codes 53
6.2.2.2 Rate 3/4 codes 54
6.2.2.2.1 (58,88) convolutional codes 54
6.2.2.2.2 (1338,1718) convolutional codes 56
6.2.3 Summary on puncturing design 58
Chapter 7 Conclusions and future works 59
7.1 Conclusions 59
7.2 Future works 60
References 61
[1] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. IT-28, pp.56-67, Jan. 1982.
[2] D. Divsalar and M. Simon, “The design of trellis coded MPSK for fading channel: performance criteria,” IEEE Trans. Commun., vol. 36, pp. 1004-1012, Sep. 1988.
[3] E. Zehavi, “8-PSK trellis codes for a rayleigh channel,” IEEE Trans. Commun., vol. 40, pp. 873-884, May 1992.
[4] G. Caire, G. Taricco and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Communications Letters, vol. 1, no. 6, pp.169-171, Nov. 1997.
[5] A. Chindapol and J. A. Ritcey, “Design, analysis, and performance evaluation for BICM-ID with square QAM constellations in rayleigh fading channels,” IEEE Journal on Selected Areas in Commun., vol. 19, no. 5, May 2001.
[6] X. Li and J. A. Ritcey, “Bit-interleaved coded modulation with interative decoding,” IEEE Commun. Lett., vol.1, pp. 169-171, Nov. 1997.
[7] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, Oct. 2001.
[8] O. M. Collins and M. Hizlan, “Determinate state convolutional codes,” IEEE Trans. Commun., vol. 41, no. 12, Dec. 1993.
[9] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their applications,” IEEE Trans. Commun., vol. 36, pp. 389-400, Apr. 1988.
[10] L. H. C. Lee, “New rate-compatible punctured convolutional codes for Viterbi decoding,” IEEE Trans. Commun., vol. 42, no. 12, Dec. 1994.
[11] A. S. Barbulescu and S. S. Pietrobon, “Rate-compatible turbo code,” Electron. Lett., vol. 31, pp. 535-536, Mar. 1995.
[12] D. Divsalar and F. Pollara, “Turbo codes for PCS applications,” in Proc. IEEE Int. Conf. Communications, Seattle, WA, Jun. 1995, vol. 1, pp. 54-59.
[13] L. Dinoi and S. Benedetto, “Design of fast-prunable S-random interleavers,” IEEE Trans. on Wireless Communications, vol.4, no.5, Sep. 2005.
[14] S. N. Crozier, “New high-spread high-distance interleavers for turbo-codes,” in Proc. Biennial Symp. Communications, Kingston, ON, Canada, May 28-31, 2000, pp. 3-7.
[15] A. Boronka and J. Speidel, “A Low Complexity MIMO System Based on BLAST And Iterative Anti-Gray-Demapping,” the 14th IEEE 2003 International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings.
[16] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate,” IEEE Trans. on Inform. Theory, March 1974.
[17] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.
[18] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001.
[19] M. Tuchler and J. Hagenauer, “EXIT charts of irregular codes,” 2002 Conference on Information Sciences and Systems , Princeton University, Mar. 2002.
[20] J. B. Cain, G. C. Clark, and J. M. Geist, “Punctured convolutional codes of rate (n-1)/n and simplified maximum likelihood decoding,” IEEE Trans. Inform. Theory, vol. IT-25, pp. 97-100, Jan. 1979.
[21] D. Haccoun and G. Begin, “High-rate punctured convolutional codes for Viterbi and sequential decoding,” IEEE Trans. Commun., vol. 37, pp. 1113-1125, Nov. 1989.
[22] G.C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications. New York: Plenum, 1981.
[23] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[24] A. J. Viterbi, “Convolutional codes and their performance in communication systems,” IEEE Trans. Commun. Technol., vol. COM-19, pp. 751-772, Oct. 1971.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top