跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡誌慶
研究生(外文):Chih-Ching Chien
論文名稱:探討hflC及相關基因在Pseudomonas sp.TeU 還原亞碲酸鹽之關聯性
論文名稱(外文):Study of hflC and related genes in tellurite reduction in Pseudomonas sp. TeU
指導教授:簡志青
指導教授(外文):Chih-Ching Chien
學位類別:碩士
校院名稱:元智大學
系所名稱:生物科技與工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:47
中文關鍵詞:還原碲;抗重金屬;假單胞菌屬
外文關鍵詞:Tellurite reductionheavy metal resistanceEnvironmental Pseudomonas sp.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微生物在金屬環境中常常能夠發展出抵抗這些有毒元素的機制,藉由從環境分離培養篩選出Pseudomonas sp. TeU,對於重金屬鎘及類金屬碲具有相當之耐受性,且具有還原碲之能力之菌株。在先前實驗中,利用跳躍子突變法我們得到一株較不具碲還原能力之突變株 (strain AU08)以及一株對鎘不具耐受性的突變株 (strain BU21),並且鑑定出此兩株突變株被跳耀子Tn5破壞之基因分別為hflC以及金屬胜肽酶(metallopeptidase)之基因。本研究進一步將此菌株完整之hflC與metallopeptidase基因選殖並定序,進行蛋白質表現;並探討金屬胜肽酶對重金屬鎘耐受性之測試;另外以穿透式電子顯微鏡(TEM)觀察菌體與類金屬碲之作用累積情形。

A Pseudomonas strain TeU resistant to tellurite (TeO32-) and cadmium (Cd2+) ions was isolated from heavy-metal contaminated sediments by enrichment. Transposon mutagenesis of strain TeU resulted in mutants exhibiting Cd2+ sensitivity (Strain BU21) and one with decreased ability to reduce tellurite (strain AU08). Genes encoding an HflKC complex and an putative metallopeptidase were identified to be associated with the bacterium’s ability for tellurite reduction and cadmium resistance, respectively. We have cloned and sequenced the hflC and metallopeptidase gene of strain TeU. Metallopeptidase gene of strain TeU was cloned and expressed in E. coli in order to investigate if the protein could improve the bacterium’s ability to resist cadmium.Transmission electron microcopy was also employed for to observe metal precipoitation when strain TeU grown in the medium containing tellurite.

摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 文獻回顧 1
1.1前言 1
1.2假單胞菌(Pseudomonas sp.)介紹 2
1.3微生物抗重金屬之生理調控 3
1.3.1生物吸附(Biosorption) 3
1.3.2金屬離子之主動運輸(Active transport of metal ions) 4
1.3.3生物累積(Bioaccumulation) 5
1.3.4生物轉換(Biotransformation) 5
1.3.5生物濾取(bioleaching) 5
1.3.6生物降解(biodegradation) 6
1.3.7生物礦化作用(Biomineralization) 6
1.4微生物與金屬碲tellurite (Te)離子毒性相關之調控 6
1.4.1對細胞膜上基因ftsH、hflK、hflC與碲(Te)離子之關係 7
1.4.2金屬胜肽酶metallopeptidase對於重金屬之關係 8
1.5研究目的 8
第二章 材料與方法 10
2.1實驗流程架構 10
2.2實驗材料 11
2.2.1本實驗所使用之菌株與質體 11
2.2.2引子 11
2.2.3藥品與試劑 12
2.2.4試劑組 12
2.2.5酵素 12
2.2.6培養基成份 13
2.2.7抗生素 13
2.2.8 DNA 電泳試劑組 13
2.2.9實驗儀器 13
2.3實驗方法 14
2.3.1菌體儲存 14
2.3.2菌株培養條件及培養基配方 14
2.3.2染色體DNA之純化(Purification of chromosomal DNA) 14
2.3.4聚合酶連鎖反應(Polymerase chain reaction, PCR) 15
2.3.5瓊脂膠體電泳分析(Agarose Gel Electrophoresis) 17
2.3.6 DNA片段之膠體萃取(DNA fragment gel extraction) 17
2.3.7 DNA接合作用(DNA -Ligation) 17
2.3.8勝任細胞製備(Preparation of competent cells ) 18
2.3.9熱休克反應(heat shock) 18
2.3.10重組質體之篩選(Screening of recombinant plasmid) 19
2.3.11質體之純化(plasmid extraction) 19
2.3.12限制酵素切割(Restriction enzyme digest) 20
2.3.13序列比對 20
2.3.14蛋白質電泳(SDS-PAGE)分析 20
2.3.15生長曲線之測定 23
2.3.16穿透式電子顯微鏡(TEM)觀察 23
第三章 實驗結果與討論 26
3.1 Pseudomonas sp.TeU之染色體純化 26
3.2實驗菌株16S rDNA之鑑定 26
3.3 Pseudomonas sp.TeU與相似菌種親源關係圖 28
3.4 Pseudomonas sp.TeU與突變株生長在tellurite金屬環境下 29
3.5聚合酶連鎖反應退化性引子設計(degenerate primers) 29
3.6 Pseudomonas sp.AU08、BU21之轉位子確認 30
3.7 Pseudomonas sp.TeU 之hflC與metallopeptidase 序列確認 30
3.8 Pseudomonas sp.AU08與BU21 突變株基因插入確認 33
3.9重組基因建構hflC gene (以pBluescriptII SK為載體) 34
3.10重組基因建構metallopeptidase gene (以pBluescriptII SK為載體) 36
3.11蛋白質電泳(SDS-PAGE)分析 38
3.12轉殖株pBluescriptII SK::metallopeptidase生長狀況分析 40
3.13類金屬胞內累積結果 41
第四章結論 42
第五章參考文獻 43

1.Guo H, L.S., Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y., Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 2010. 101(22): p. 8599-8605.
2.Fei Wanga, J.Y., Yang Sia, Huilun Chena, Mohammad Russela, Ke Chena, Yiguang Qiana, Gyula Zarayb and Emilia Bramantic, Short-time effect of heavy metals upon microbial community activity Journal of Hazardous Materials, 2009. 173(1-3): p. 7.
3.G. Coral, B.A., M. N. Ünaldı Coral A Preliminary Study on Tellurite Resistance in Pseudomonas spp. Isolated from Hospital Sewage. Polish J. of Environ, 2005. 15: p. 517-520.
4.Romany N. N. Abskharon, S.H.A.H., Mohammad Humayun Kabir, Syed Abdul Qadir, Sanaa M. F. Gad El-Rab and Myeong-Hyeon Wang, The role of antioxidants enzymes of E. coli ASU3, a tolerant strain to heavy metals toxicity, in combating oxidative stress of copper microbology and biotechnology, 2010. 26(2): p. 241-247.
5.Avery, Simon V., Review,Molecular targets of oxidative stress. Biochemical Journal, 2011. 434(2): p. 201-210.
6.Xiao Xiao, S.L., Guangming Zeng, Wanzhi Wei, Yong Wan, Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol, 2010. 101(6): p. 1668-74.
7.Lin Tang, G.-M.Z., Guo-Li Shen†, Yuan-Ping Li, Yi Zhang and Dan-Lian Huang, Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ Sci Technol, 2008. 42(4): p. 1207-12.
8.Chen G, Z.G., Tang L, Du C, Jiang X, Huang G, Liu H, Shen G, Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresour Technol, 2008. 99(15): p. 7034-40.
9.Bai HJ, Z.Z., Yang GE, Li BZ., Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. Bioresour Technol, 2008. 99(16): p. 7716-22.
10.Aberoumand, A., A Review on pseudomonas in Marine Fish. World Journal of Fish and Marine sciences 2 (4), 2010: p. 291-296.
11.Rathgeber C, Y.N., Stackebrandt E, Beatty JT, Yurkov V, Isolation of Tellurite- and Selenite-Resistant Bacteria from Hydrothermal Vents of the Juan de Fuca Ridge in the Pacific Ocean. Applied and Environmental Microbiology, 2002. 68(9): p. 4613-4622.
12.Spain, A. and D.E. Alm, Implications of Microbial Heavy Metal Tolerance in the Environment. Reviews in Undergraduate Research, 2003. Vol. 2: p. 1-6.
13.Rosen*, B.P., . Comparative Biochemistry and Physiology, 2002: p. 689–693.
14.Mallika Ghosh, J.S., And Barry P. Rosen*, Pathways of As(III) detoxification in Saccharomyces cerevisiae. Department of Biochemistry and Molecular Biology, 1999. Vol. 96, pp.: p. 5001-5006.
15.Ji, S.S.a.G., Newer Systems for Bacterial Resistances to Toxic Heavy Metals. Environmental Health Perspectives, 1994. Volume 102: p. 107-113.
16.Henry H. Tabak1, Piet Lens2, Eric D. van Hullebusch2,4,5& Winnie Dejonghe3, Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides – 1. Microbial Processes and Mechanisms Affecting Bioremediation of Metal Contamination and Influencing Metal Toxicity and Transport. Reviews in Environmental Science and Bio/Technology, 2005. 4(3): p. 115-156.
17.Volesky B, M.-P.H., Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv, 2006. 24(5): p. 427-51.
18.Volesky B, M.-P.H., Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, 2008. 157(2-3): p. 220-229.
19.Oded Lewinson 1 , A.T.L., and Douglas C. Rees 1, A P-type ATPase importer that discriminates between essential and toxic transition metals. Proceedings of the National Academy of Sciences, 2009. 106(12): p. 4677-4682.
20.Rosen*, B.P., Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comparative Biochemistry and Physiology, 2002. Part A 133: p. 689–693.
21.Aurelio Moraleda-Mun˜oz, J.P.r., Antonio Luis Extremera, and Jose´ Mun˜oz-Dorado*, Differential Regulation of Six Heavy Metal Efflux Systems in the Response of Myxococcus xanthus to Copper. Applied and Environmental Microbiology, 2010. 76(18): p. 6069-6076.
22., D.H.N., Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 2003. 27(2-3): p. 313-339.
23.Eide, D.J., Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2006. 1763(7): p. 711-722.
24.Azza. A. Abou Zeid, W.A.H., Hedayat M. Salama and Ghada A. A. Fahd, Biosorption of Some Heavy Metal Ions Using Bacterial Species Isolated from Agriculture Waste Water Drains in Egypt. Journal of Applied Scienes Research, 2009. 5(4): p. 372-383.
25.Qunfang Zhou, J.Z., Jianjie Fu, Jianbo Shi, Guibin Jiang∗, Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 2008. 606(2): p. 135-150.
26.Hazen, T.C. and H.H. Tabak, Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides. Reviews in Environmental Science and Bio/Technology, 2005. 4(3): p. 157-183.
27.D. ANN BROWN, † BARBARA L. SHERRIFF*,1 J. A. SAWICKI,3 and RICHARD SPARLING2, Precipitation of iron minerals by a natural microbial consortium. Geochimica et Cosmochimica Acta, 1999. Vol. 63(No. 15): p. 2163–2169.
28.Nelson, Y.M.L., L. W.Shuler, M. L.Ghiorse, W. C., Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Environ Sci Technol, 2002. 36(3): p. 421-5.
29.Ashish Pathak a , M.G.D.a., * , T.R. Sreekrishnan b, Bioleaching of heavy metals from sewage sludge: A review. Journal of Environmental Management, 2009. 90(8): p. 2343-2353.
30.Olubambi, P., Influence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores. Hydrometallurgy, 2009. 95(1-2): p. 159-165.
31.Shen-Yi Chen, J.-G.L., Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effects of sludge solids concentration. Chemosphere, 2004. 54(3): p. 283-289.
32.Tong-Jiang Xu, Y.-P.T., Fungal bioleaching of incineration fly ash: Metal extraction and modeling growth kinetics. Enzyme and Microbial Technology, 2009. 44(5): p. 323-328.
33.Pérez, R.M.C., G.Gómez, J. M.Ábalos, A.Cantero, D., Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters. Journal of Hazardous Materials, 2010. 182(1-3): p. 896-902.
34.FRANCIS*, G.J.-T.A.A.J., Mechanisms of Biodegradation of Metal-Citrate Complexes by Pseudomonas fluorescens. American Society for Microbiology, 1995. Vol. 177, No. 8: p. 1989–1993.
35.KONHAUSER2, V.R.P.A.K.O., Benefits of bacterial biomineralization. Geobiology, 2008. 6(3): p. 303-308.
36.Taylor, D.E., Bacterial tellurite resistance. Trends in Microbiology, 1999. 7: p. 5.
37.Han, C.-C.C.a.C.-T., Tellurite resistance and reduction by a paenibacillus sp. isolated from heavy metal. Environmental Toxicology and Chemistry,, 2009. Vol. 28, No. 8, pp.: p. 1627-1632.
38.Yoshinori Akiyama³, A.K., Hajime Tokuda§, and Koreaki Ito, FtsH (HflB) Is an ATP-dependent Protease Selectively Acting on SecY and Some Other Membrane Proteins*. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1996. Vol. 271,(No. 49): p. 3119-31201.
39.Narberhaus F, U.C., Hennecke H., Characterization of the Bradyrhizobium japonicum ftsH Gene and Its Product. American Society for Microbiology, 1999. Vol. 181(No. 23): p. 7394-7397.
40.Vanbloois, E.D., H.Froderberg, L.Houben, E.Urbanus, M.Dekoster, C.Degier, J.Luirink, J., Detection of cross-links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins. FEBS Letters, 2008. 582(10): p. 1419-1424.
41.Naoya Saikawa, Y.A., and Koreaki Ito *, FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. Journal of Structural Biology, 2004. 146(1-2): p. 123-129.
42.Narberhaus, F., et al., Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Research in Microbiology, 2009. 160(9): p. 652-659.
43.Akiyama*, Y., Quality Control of Cytoplasmic Membrane Proteins in Escherichia coli. Journal of Biochemistry, 2009. 146(4): p. 449-454.
44.He, P.R.C.a.C., Selective recognition of metal ions by metalloregulatory proteins. Current Opinion in Chemical Biology, 2008. 12(2): p. 214-221.
45.蔡孟儒, Shewanella sp. 抗重金屬鎘與類金屬碲機制之探討. 元智大學,生物科技與工程研究所, 2008.
46.蔣明蕙, 利用跳躍子突變探討Shewanella sp. TeC 抗重金屬鎘與類金屬碲之特性. 元智大學,生物科技與工程研究所, 2009.
47.韓竹婷, 重金屬汙染環境中抗高濃度類金屬碲微生物之分離與探討. 元智大學,生物科技與工程研究所, 2007.
48.Chih-Ching Chien*, M.-H.J., Meng-Ru Tsai, Chih-Ching Chien, Isolation and characterization of an environmental cadmium and tellurite resistant Pseudomonas strain. Environmental Toxicology and Chemistry, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 林美和(1987)。數學障礙兒童學習問題之研究,台灣師範大學社會教育學刊,16,46-76。
2. 林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,4,295-347。
3. 林美和(1987)。數學障礙兒童學習問題之研究,台灣師範大學社會教育學刊,16,46-76。
4. 李咏吟(1990)。改進國中低成就學生學習技巧之團體輔導模式,彰化師大輔導學報,13,53-77。
5. 李咏吟(1990)。改進國中低成就學生學習技巧之團體輔導模式,彰化師大輔導學報,13,53-77。
6. 李惠貞(1991)。國小兒童分數減法學習層次與皮亞傑式認知能力關係之研究。花蓮師院學報,4,273-313。
7. 李惠貞(1991)。國小兒童分數減法學習層次與皮亞傑式認知能力關係之研究。花蓮師院學報,4,273-313。
8. 呂玉琴(1911b)。國小學生的分數概念:1/2 vs 2/4。國民教育,31(11,12),10-15。
9. 呂玉琴(1911b)。國小學生的分數概念:1/2 vs 2/4。國民教育,31(11,12),10-15。
10. 吳相儒(2003)。國小學生學習分數概念時常見的迷失。翰林文教雜誌,24,28-33。
11. 吳相儒(2003)。國小學生學習分數概念時常見的迷失。翰林文教雜誌,24,28-33。
12. 支毅君(1995)。分數概念教學的省思-由個案談起。國教之聲,28(4),1-7。
13. 支毅君(1995)。分數概念教學的省思-由個案談起。國教之聲,28(4),1-7。
14. 張新仁(2001)。實施補救教學之課程與教學設計。教育學刊,17,85-106。
15. 張新仁(2001)。實施補救教學之課程與教學設計。教育學刊,17,85-106。