[1]. API, “Recommended practice for planning, designing, and construction fixed offshore platforms-working stress design,” 2000.
[2]. Barbara J.C., Tara, C.H., “Experimental investigation of plastic demands in piles embedded in multi-layered liquefiable soils,” Soil Dynamics and Earthquake Engineering, Vol. 49, pp. 146-156 (2013).
[3]. Bhattacharya S.,“Pile Instability during earthquake liquefaction,” Ph.D Dissertation, University of Cambridge, Cambridge, UK (2003).
[4]. Finn, W. D. L., and Fujita, N., “Piles in liquefiable soils:seismic analysis and design issues,” Soil Dynamics and Earthquake Engineering,Vol.22, No. 22, pp.731-742 (2002).
[5]. Lee, C.J., Hung, W.Y., Tsai, C.H., Chen, T., Tu, Y.C., Huang, C.C., “Shear wave velocity measurements and soil-pile system identifications in dynamic centrifuge tests,” Bulletin of Earthquake Engineering, Vol. 2, pp.717-734 (2014).
[6]. Lee, C.J., Wang, C.R., Wei,Y.C., and Hung, W.Y., “Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests,” Bulletin of Earthquake Engineering, Vol. 10, No.2, pp.401-420 (2012).
[7]. Lee, C.J., Wei, Y.C., Kou, Y.C., “Boundary effects of a laminar container in centrifuge shaking table tests,” Soil Dynamics and Earthquake Engineering, Vol.34, No. 1, pp.37-51 (2012).
[8]. Reese, L.C., and Matlock, H., “Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth,” Proceedings of the Eighth Texas Conference on Soil Mechanics and Foundation Engineering, University of Texas, Austin, Texas (1956).
[9]. Terzaghi, K., “Evaluation of Coefficients of Subgrade Reaction,” Geotechnique, Vol. 5, No. 4, pp.297-326 (1955).
[10]. Tokimatsu K., Suzukia S., and Sato M., “Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundation,” Soil dynamics and earthquake engineering, Vol.25, pp.753-762 (2005).
[11]. Hung, W.Y., Lee, C.J., Chung, W.Y., Tsai, C.H., Chen, T., Huang, C.C., Wu, Y.C., “Centrifuge Modeling on Seismic Behavior of Pile in Liquefiable Soil Ground,” Applied Mechanics and Materials, Vol.479-480, pp. 1139-1143 (2014).
[12]. Yoo, M.T., Choi, J.I., Han, J.T., Kim, M.M., “Dynamic P-Y Curves for Dry Sand from Centrifuge,” Journal of Earthquake Engineering, Vol. 17, pp. 1082-1102 (2013).
[13]. 王崇儒,「利用彎曲元件探查離心砂土模型剪力波波速頗面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。[14]. 中華民國大地工程學會,建築物基礎構造設計規範,中華民國 (2001)。
[15]. 日本道路協會,道路橋示方書‧同解說,日本 (1996)。
[16]. 呂振榮,「以動態離心模型試驗模擬可液化地盤中離岸風機單樁基礎之受振反應」,碩士論文,國立中央大學土木工程學系,中壢 (2014)。[17]. 呂昕澔,「以離心模型模擬離岸風機單樁受反覆水平側推行為」,碩士論文,國立中央大學土木工程學系,中壢 (2014)。[18]. 吳宇浩,「液化地盤群樁基礎地震反應之模擬」,碩士論文,國立中央大學土木工程學系,中壢 (2014)。[19]. 林郁庭,「以離心模型模擬離岸風機單樁受反覆水平側推之p-y曲線」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。[20]. 邱益增,「加勁土堤受振反應之離心模型試驗」,碩士論文,國立中央大學土木工程學系,中壢 (2012)。[21]. 涂亦峻,「位於可液化砂土層中單樁基礎受振反應的離心模擬」,碩士論文,國立中央大學土木工程學系,中壢 (2011)。
[22]. 郭玉潔,「探討基層版試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,中壢 (2009)。[23]. 張有齡、周南山,「張氏簡易側樁分析法(上篇:靜力部份)」,地工技術,第25期,第64-82頁(1989)。[24]. 歐晉德,「基樁之側向支承力」,地工技術,第18期,第60-68頁 (1987)。
[25]. 鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。