跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏融
研究生(外文):Po-Jung Huang
論文名稱:含孔洞正交性材料板應力集中之研究
論文名稱(外文):A Study of stress concentration forOrthotropic plates containing elliptic holes
指導教授:吳光鐘
口試委員:張正憲胡潛濱邱佑宗陳世豪
口試日期:2013-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:61
中文關鍵詞:線彈性史磋法孔洞正交性應力集中無限板材料常數A、B
外文關鍵詞:linear elasticstroh formalismelliptic holesorthotropicstress concentrationinfinite platematerial constant A、B
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文利用柯西積分方程式結合異向性彈性力學所得到的雙積分方程式,分析了五種正交性材料板內或邊界上不同類型橢圓孔洞的最大應力值。分析前先以含單一孔洞之無限板中受均勻張力的解析解確認本文數值分析方法的準確性。並將五種孔洞類型與文獻有關等向性材料數值解與本文數值解的比較以進一步驗證方法的正確性。本文另考慮以立方晶體矽為例,探討當橢圓孔洞短軸除以長軸比例越小以及兩個或兩個以上的孔洞之間彼此間距越小時均有最大應力值增加的情形,且最大應力值均較等向性材料略小。最後探討當由彈性常數所組成的材料常數A值越小時最大應力值越大;而最大應力值並不隨著材料常數B的改變而有明顯變化。本文建立一套輸入材料常數、孔洞大小、與間距即可求得最大應力值的方法。

With dual boundary integral equation, combined from Cauchy''s formalism and anisotropic elastic mechanics, this thesis is aimed to analyze the maximum stress concentration on the inner plate or boundary by five different types of elliptic holes in an orthotropic plate. First, the analytic solution of the infinite plate with single elliptic hole under uniform tensile stress is used to confirm the accuracy of the numerical method. Second, five different types of elliptic holes are compared with literature numerical solution for isotropic material to further confirm the accuracy of the method. And then, this thesis takes Silicon, a cubic materials, for example, when the ratio of minor axes to major axes and the distance between two or more than two elliptic holes are smaller, the maximum stress value will be larger, and it would be slightly smaller than that for isotropic material. Last, when the material constant A formed by elastic constant is smaller, the maximum stress value would be larger, but the value would not change obviously with material constant B. This thesis constructs a method for computing the maximum stress concentration value by inputting the elastic constant, the size of holes, and distance between each holes.


目錄
摘要 .................................................................... I
目錄 .................................................................... III
圖目錄 .................................................................... IV
表目錄 .................................................................... VII
第一章 導論 ............................................................ 1
1.1 應力集中簡介 ..................................... 1
1.2 文獻回顧與目的 ..................................... 1
1.3 本文大綱 ..................................... 2
第二章 解析解.......................................................... 3
2.1.二維彈性力學基本方程式 ...................... 3
2.2 史磋法 ..................................................... 3
2.3 橢圓坐標系映射到單位圓坐標系 ......... 7
第三章 數值方法 .................................................... 13
3.1 廣義柯西公式 ......................................... 13
3.2 雙邊界積分方程式 ................................. 14
3.3 混合式邊界條件 ..................................... 16
第四章 數值結果與討論 ........................................... 22
4.1.無限域橢圓洞解析解與數值解比較 ...... 23
4.2.孔洞問題型態介紹 .................................. 28
4.3.孔洞型態驗證 .......................................... 34
4.4孔洞形狀對應力集中的影響 .................. 39
4.5.材料常數對應力集中的影響 .................. 46
第五章 未來展望 ..................................................... 60
參考文獻 ................................................................... 61


[1] Gustav, K.,. ''Die theorie der elastizitat und die bedurfnisse der
festigkeitslehre'', Springer, 1898.
[2] Muskhelishvili, N. I., ''Some basic problems of the mathematical theory of
elasticity '', transl. by J. R. M. Radok, Noordhoff, Groningen, 1953.
[3] Ling, C. B.,'' On the stresses in a plate containing two circular holes'' ,
J. Appl. Phys., 19, 1947.
[4] Horii, H. and Nemat, N. S., ''elastic fields of interacting inhomogeneities''
,Int. J. Solids Struct., 21, 731-745, 1985.
[5] Hwu, C. B. and Yen W. J. ,''Green''s functions of two-dimensional
anisotropic plates containing an elliptic holes '', Int. J. Solids Struct.,
27, 1705-1719, 1991.
[6] Wu, K. C., ''A new boundary integral equation formulation for linear
elastic solids'', ASME J. Appl. Mech., 59, 344-348. 1992.
[7] Pilkey, W. D, and Pilkey, D. F.,'' Peterson''s stress concentration factor
'',John Wiley & Sons, Inc., New Jersey, 1997.
[8] Ting, T.C.T.'' Generalized stroh formalism for anisotropic elasticity for general
boundary conditions '', Acta Mechanica Sinica, 8, 193-207. 1992.
[9] Chen, K.T., Ting K. and Yang W.S., '' Analysis of stress concentration due to
irregular ligaments in an infinite domain containing a row of circular holes
'', Mech. Struct. & Mach., 28, 65-84, 2000.
[10] Cruise, T.A.,'' Two-dimensional BIE fracture mechanics analysis '', Appl. Math.
Modeling, 2, 287-293, 1978.
[11] Hwu, C. and Ting, T.C.T.,'' Two-dimensional problems of the anisotropic elastic
solid with an elliptic Inclusion '', Q. J. Mech. Appl. Math., 42, 553-572, 1989.
[12] Kamel, M. and Liaw, B.M.,'' Green’s function due to concentrated moments
applied in an anisotropic plane with an elliptic hole or crack '', Mech. Res.
Communs, 16(6), 311-319, 1989.
[13] Kamel, M. and Liaw, B.M.,'' Analysis of a loaded elliptical hole or crack in an
anisotropic plane'', Mech. Res. Communs, 16(6), 379-383, 1989
[14] Savin, G.N., Kosmodamianskii, A.S., ''Stress concentration around holes
'', New York, Pergamon Press, 1961.
[15] Wu, K.C.,'' Representation of the stress intensity factors by path-independent
integrals '', ASME J. Appl. Mech., 56, 780-785, 1989.
[16] Sutton, M.A ., Liu, C.H., Dickerson, J.R. and Mcneill, S.R.,'' The
two-dimensional boundary integral equation method in elasticity with
consistent boundary formulation,'', Engineering Analysis, 3(2), 79-84, 1986.
[17] Durelli, A.J., Parks, V.J., and Feng, H.C.,'' Stress around an elliptical hole in a
finite plate subjected to axial loading '', ASME J. Appl. Mech.33(1),
192-195, 1966.
[18] Seng, C .T.,'' Finite-width correction factors for anisotropic plate containing a
central opening '', J. Compos. Mater., 22, 1080-1097, 1988.
[19] Konish, H. J. and Whitney, J. M.,'' Approximate stresses in an
orthotropic plate containing a circular hole '', J. Compos. Mater.
9, 157-166, 1975.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [33] 鄧振源、曾國雄. (1989). 層級分析法(AHP)的內涵特性與應用(上). 中國統計學報, 13769-13786.
2. [33] 鄧振源、曾國雄. (1989). 層級分析法(AHP)的內涵特性與應用(上). 中國統計學報, 13769-13786.
3. [31] 詹士樑, 黃書禮, & 王思樺. (2003). 台北地區洪水災害風險分區劃設之研究. 都市與計劃, 30(4), 263-280.
4. [31] 詹士樑, 黃書禮, & 王思樺. (2003). 台北地區洪水災害風險分區劃設之研究. 都市與計劃, 30(4), 263-280.
5. [34] 鄧振源、曾國雄. (1989). 層級分析法(AHP)的內涵特性與應用(下). 中國統計學報, 13707-13724.
6. [34] 鄧振源、曾國雄. (1989). 層級分析法(AHP)的內涵特性與應用(下). 中國統計學報, 13707-13724.
7. [30] 葉秀珍, & 陳昭榮. (2007). 災害風險管理與其因應制度的探討. 臺灣社會福利學刊, 6(1), 51-92.
8. [29] 陳亮全, 洪鴻智, 詹士樑, & 簡長毅. (2003). 地震災害風險-效益分析於土地使用規劃之應用: 應用 HAZ-Taiwan 系統. 都市與計劃, 30(4), 281-299.
9. [29] 陳亮全, 洪鴻智, 詹士樑, & 簡長毅. (2003). 地震災害風險-效益分析於土地使用規劃之應用: 應用 HAZ-Taiwan 系統. 都市與計劃, 30(4), 281-299.
10. [24] 林冠慧. (2004). 全球變遷下脆弱性與適應性研究方法與方法論的探討. 全球變遷通訊雜誌, 33-38.
11. [30] 葉秀珍, & 陳昭榮. (2007). 災害風險管理與其因應制度的探討. 臺灣社會福利學刊, 6(1), 51-92.
12. [24] 林冠慧. (2004). 全球變遷下脆弱性與適應性研究方法與方法論的探討. 全球變遷通訊雜誌, 33-38.
13. [23] 李欣輯, 楊惠萱, 廖楷民, & 蕭代基. (2009). 水災社會脆弱性指標之建立. 建築與規劃學報, 10(3), 163-182.
14. [23] 李欣輯, 楊惠萱, 廖楷民, & 蕭代基. (2009). 水災社會脆弱性指標之建立. 建築與規劃學報, 10(3), 163-182.
15. [22] 吳杰穎, & 黃昱翔. (2011). 颱洪災害脆弱度評估指標之建立: 以南投縣水里鄉為例. 都市與計劃, 38(2), 195-218.