跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉如芳
研究生(外文):YEH JU FANG
論文名稱:以即時定量聚合酶鏈鎖反應技術監測透水性反應牆之微生物族群變化研究
論文名稱(外文):Microbial Community Dynamics in a Permeable Reactive Barrier using Real-time PCR Technique
指導教授:林啟文林啟文引用關係
指導教授(外文):Chi-Wen Lin
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:76
中文關鍵詞:變性梯度凝膠電泳即時定量聚合酶連鎖反應透水性反應牆生物降解
外文關鍵詞:denaturing gradient gel electrophoresisreal-time PCRpermeable reactive barrierbioremediation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:509
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在於建立以變性梯度凝膠電泳(denaturing gradient gel electrophoresis, DGGE)與即時定量聚合酶鏈鎖反應(real-time PCR)之分子生物技術,藉以追蹤及監測實驗室模組之透水性反應牆(permeable reactive barrier, PRB)中之微生物分解BTEX能力及菌群分佈消長情形。
由氮源濃度對BTEX之批次降解能力評估可知,硝酸鈉之添加量多寡,影響「現地混合菌」降解BTEX之效果顯著。「現地混合菌」對污染物之負荷能力評估中顯示,苯與甲苯於20、40及80 ppm之濃度均可被完全降解;提高濃度至120、160、240及320 ppm時,則苯無法有效完全降解,殘存率分別為40、60、65、90及100 %;而甲苯之殘存率則分別為10、40、55、90及100 %。此外,各濃度之菌量變化可由吸光值、瓊脂膠電泳及real-time PCR三者獲得一致之結果。由釋氧物質(ORC)之管柱實驗結果顯示,在連續監測20天中,CaO2添加比例為40 %之自製ORC顆粒所得之平均溶氧最高為5.08 mg/L,其單位重量之氧氣釋放率為0.25 mg O2/day/g-ORC。
由釋氧反應牆分解BTEX之長期穩定性評估實驗結果顯示:(1) ORC顆粒之氧氣釋放量足以供應給釋氧反應牆系統中之「現地混合菌」所利用;(2)BTEX於有機突增後,其苯、甲苯、乙苯及對-二甲苯之去除效率分別下降21 %、19 %、17 %及10 %;(3)有機負荷突增後對基質之去除效率回復速度為對-二甲苯 > 乙苯 > 苯 > 甲苯;(4)ORC顆粒之釋氧能力可持續約40天;(5)由DGGE圖譜顯示,於PRB系統進行有機突增(shock loading)之前後期,其菌群種類變化由原先至少13種遞減至9種,顯示有機突增易造成系統中之菌種危害;(6)以開環酵素(catechol 2,3-dioxygenase)基因之序列進行real-time PCR定量結果可知,在PRB系統中,有機突增之衝擊會造成具開環酵素基因之菌量遞減,但隨系統趨於穩定(第79天後期)則菌量亦遞增。
This study was conducted with the application of denaturing gradient gel electrophoresis (DGGE), and real-time quantitative polymerase chain reaction (real-time PCR) molecular biotechnology for monitoring the permeable reactive barrier (PRB) in the relation with BTEX decomposition efficiency and the distribution of microbial community.
Various amounts of nitrogen nutrients and BTEX were added to examine the treatment efficiencies. It was shown that the high sodium nitrate amount had improved the BTEX removal, which was an evidence of effects on BTEX treatment. The results of benzene and toluene removal efficiencies revealed that it was completely degraded for both two compounds at the concentrations of 20, 40 and 80 ppm. Increasing the concentrations of these two compounds to 120, 160, 240 and 320 ppm resulted in the decreasing in treatment efficiencies, and the concentrations remained 40, 60, 65, 90 and 100 % for benzene, and 10, 40, 55, 90 % for Toluene, respectively. Furthermore, the microbial variations at various concentrations were consistent via optical density (OD), DGGE analysis and real-time PCR results. Each column test was conducted for 20 days to investigate the effectiveness of oxygen releasing compound (ORC). It was indicated that the highest dissolved oxygen was achieved, which was 5.08 mg/L (equal to 0.25 mg O2/day/g-ORC) at 40 % of CaO2.
The results of long-term stability tests of oxygen releasing from PRB system showed that: (1) Oxygen released from ORC was sufficient for the demand of bacteria. (2) In shock-loading of BTEX tests, the removal efficiencies were reduced by 21%, 19%, 17% and 10 % for benzene, toluene, ethylbenzene and xylene, respectively. (3) Removal efficiencies were then recovered in the ascending order of as follow: xylene> ethylbenzene> benzene> toluene. (4) ORC can be used for 40 days. (5) DGGE analysis showed the changing in the microbial community structure before (13 groups) and after shock-loading (reduced to 9 groups), that implied the shock-loading was harmful to bacteria. (6) The results from real-time PCR in the study of catechol 2,3-dioxygenase gene revealed that the quantification of this gene has been declined after shock-loading, but it was latter well again at the 79th day.
封面內頁
簽名頁
博碩士論文暨電子檔案上網授權書 iii
中文摘要 iv
英文摘要 vi
誌謝 viii
目錄 ix
圖目錄 xii
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究目的與內容 2
第二章 文獻回顧 4
2.1 透水性反應牆整治污染之地下水研究 4
2.1.1 透水反應牆之形式 5
2.1.2 釋氧物質之特性 6
2.1.3 釋氧反應牆之相關研究 8
2.2 BTEX之簡介 9
2.3 生物復育過程之菌群結構分析 13
2.3.1 分子生物技術的重要性 14
2.3.2 聚合酶鏈鎖反應原理 14
2.3.3 PCR-DGGE分析技術 15
2.3.4 Real-time PCR分析技術 16
第三章 研究方法 17
3.1 研究材料與器材設備 17
3.1.1 菌種來源 17
3.2.2藥品種類 18
3.1.3儀器設備 21
3.2研究方法與步驟 23
3.2.1氮源濃度對BTEX之批次降解能力評估 24
3.2.2「現地混合菌」對苯與甲苯之負荷能力評估 26
3.2.3釋氧物質之管柱實驗 26
3.2.4釋氧反應牆分解BTEX之長期穩定性實驗 27
3.2.5分子生物技術建立 31
第四章 結果與討論 38
4.1 氮源濃度對BTEX之批次降解能力評估 38
4.2 「現地混合菌」對苯與甲苯之負荷能力評估 42
4.2.1 批次實驗測試 42
4.2.2 Real-time PCR分析 45
4.3 釋氧物質之管柱實驗 49
4.4 釋氧反應牆分解BTEX之長期穩定性評估 51
4.4.1 釋氧反應牆內微生物之生物需氧量 51
4.4.2 BTEX之去除效率評估 53
4.4.3 水質分析 55
4.4.4 釋氧反應牆內之菌群結構分析 59
第五章 結論與建議 66
5.1 結論 66
5.2 建議 68
參考文獻 70
行政院環境保護署,地下水污染管制標準。
URL: http://ww2.epa.gov.tw/SoilGW/0301.asp

江姿幸,(2005),滲透性反應牆對於砷污染土壤進行電動力法復育影響之研究,國立中山大學環境工程研究所,碩士論文。

林財富、洪旭文,(1999),受污染場址現地化學處理方法介紹,工業污染防治,72:178-200。

卓坤慶,(2002),應用慢釋氧物質處理受石油碳氫化合物污染之地下水-現地模場試驗,國立台灣大學環境工程學研究所,碩士論文。

翁明章、戴良恭、林裕峰,(1994),甲苯舖路造成之職業傷害,中華職業醫學雜誌,第1卷,第3期,119-113。

陳谷汎,(2001),以生物復育法整治2,4-二氯酚污染之地下水,國立中山大學環境工程研究所,碩士論文。

陳郁旋,(2004),利用Real-time PCR偵測油污中芳香烴開環酵素catechol 2,3-dioxygenase之研究,國立中興大學生命科學系,碩士論文。
黃志謙,(2003),新的電泳技術-改良式DNA單股構型多形及部分雜交方法分析白蟻腸道的細菌,國立彰化師範大學生物學系,碩士論文。

張育傑、張怡塘、黃心怡、郭旭瓊、鎦敦仁、葉蕙萱,(2001),釋氧物質之釋氧反應特性研究,NSC-90-2211-E-236-005。

莫展民,Miao Zhang and Scott D. Warner, (2005),滲透性反應牆在地下水處理上的應用,台灣土壤及地下水環境保護協會簡訊,第15期,7-10。

經濟部工業局,(2004),土壤與地下水整治技術相關研究彙整-BTEX,環保技術e報,第21期。

謝昶毅,(2003),以PCR-DGGE技術分析石油碳氫化合物污染地下水之微生物相,國立中山大學生物科學研究所,碩士論文。

羅致良,(2003),高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育,國立台灣大學環境工程學研究所,碩士論文。

Andersen, B., J. Smedsgaard, I. Jorring, P. Skouboeb, and L.H. Pedersen, (2006) “Real-time PCR quantification of the AM-toxin gene and HPLC qualification of toxigenic metabolites from Alternaria species from apples” International Journal of Food Microbiology, 111: 105-111.

Amann, R.I., W. Ludwig, and K.H. Schliefer, (1995) “Phylogenetic identification and in situ dectection of individual microbial cells without cultivation” Microbiology and Molecular Biology Reviews, 59: 143-169.

Barbara, T., K. Wonerow, K. Paschke, (1999) “DGGE is more sensitive for the detection of somatic point mutations than direct sequencing” BioTechnioues, 27: 266-268.

Borden, R.C., R.T. Goin, C.M. Kao, (1997) “Control of BTEX migration using a biologically enhanced permeable barrier” Ground Water Monitoring and Remediation, 17: 70-80.

Chae, J.C., E. Kim, E. Bini, G.J. Zylstra, (2007) “Comparative analysis of the catechol 2,3- dioxygenase gene locus in thermoacid- ophilic archaeon Sulfolobus solfataricus strain 98/2” Biochemical and Biophysical Research Communications, 357: 815-819.

Chapman, S.W., B.T. Byerley, D.J.A. Smyth, and D.M. Mackay, (1997) “A pilot test of passive oxygen release for enhancement of in situ bioremediation of BTEX-contaminated ground water” Ground Water Monitoring Remediation, 17: 93-105.

Chapman, S.W., B.T. Byerly, D.J. Smyth, R.D. Wilson, D.M. Mackay, (1997) “Semi-passive oxygen release barrier for enhancement of intrinsic bioremediation” In Situ and On-Site Bioremediation, Battelle Press, Columbus, OH. 4: 209-214.

Drogos, D.L., (2000) “MTBE v. other oxygenates” Presented at Mealy’s MTBE Litigation Conference, 11-12.

Filion, M., M. St-Arnaud, and S.H. Jabaji-Hare, (2003) “Direct quantification of fungal DNA from soil substrate using real-time PCR” Journal of Microbiological Methods, 53: 67-76.

Gachon, C., A. Mingam, and B. Charrier, (2004) “Real-time PCR: what relevance to plant studies?” Journal of Experimental Botany, 55: 1445-1454.

Gavaskar, A.R., (1999) “Design and construction techniques for permeable reactive barriers” Journal of Hazardous Materials, 68: 41-71.

Gillham, R.W., (1989) “Selection of casing materials for groundwater monitoring wells-Sorption processes” Landfills into the Next Decade, National Solid Wastes Management Assoc, October 23-24, pp. 108-122.

Head, I.M., J.R. Saunders, and R.W. Pickup, (1998) “Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultured microorganisms” Microbial Ecology, 35: 1-21.

Hendrickx, B., H. Junca, J. Vosahlova, A. Lindner, I. Ruegg, M. Bucheli-Witschel, F. Faber, T. Egli, M. Mau, M. Schlomann, M. Brennerova, V. Brenner, D. H. Pieper, E. M. Top, W. Dejonghe, L. Bastiaens, D. Springael, (2006) “Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site” Journal of Microbiological Methods, 64: 250-265.

Hristova, K., B. Gebreyesus, D. Mackay, and K. M. Scow, (2003) “Naturally occurring bacteria similar to the methyl tert-butyl ether (MTBE)-degrading strain PM1 are present in MTBE- contaminated groundwater” Applied and Environmental Microbiology, 69: 2616-2623.

Kao, C.M., S.C. Chen, J.Y. Wang, Y.L. Chen, and S.Z. Lee, (2003) “Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies” Water Research, 37: 27-38.

Kao, CM., (1993) “Bioremediation of BTEX contaminated aquifers using biologically active barriers” Ph.D. dissertation, North Carolina State University, Raleigh, NC.

Kim, D., J.C. Chae, J.Y. Jang, G..J. Zylstra, Y.M. Kim, B.S. Kang, E. Kim, (2005) “Functional characterization and molecular modeling of methylcatechol 2,3-dioxygenase from o-xylene-degrading Rhodococcus sp. strain DK17” Biochemical and Biophysical Research Communications, 326: 880-886.

Kovalick, W.W., (1999) “Field applications of in situ remediation technologies: permeable reactive barriers” United States Environmental Protection Agency, EPA 542-R-99-002.

Labrenz, M., I. Brettar, R. Christen, S. Flavier, J. Bötel, and M.G. Höfle, (2004) “Development and application of a real-time PCR approach for quantification of uncultured bacteria in the central baltic sea” Applied and Environmental Microbiology, 70: 4971-4979.

Muyzer, G., E.C. Waal, and A.G. Uitterlinden, (1993) “Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA”, Applied and Environmental Microbiology, 59: 695-700.

Odziemkowski, M.S., T.T. Schuhmacher, R.W. Gillham, and E.J. Reardon, (1998) “Mechanism of oxide film formation on iron in simulating groundwater solutions: raman spectroscopic studies” Corrosion Science, 40: 371-389.

Pael, J., and S. Shelton, (1995) “Permeable barriers to remove benzene: candidate media evaluation” Journal of Environmental Engineering ASCE, 121: 411-415.

Renella, G., M. Mench, A. Gelsomino, L. Landi, and P. Nannipieri, (2005) “Functional activity and microbial community structure in soils amended with bimetallic sludges” Soil Biology & Biochemistry, 37: 1498-1506.

Ritter, K., M.S. Odziemkowski, R.W. Gillham, (2002) “An in situ study of the role of surface films on granular iron in the permeable iron wall technology” Journal of Contaminant Hydrology, 55: 87-111.

USEPA, (2002) “Field applications of in situ remediation technologies: permeable reactive barriers” Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC, USA.

USEPA, (1998) “Carcinogenic effects of benzene-an EPA/600/P-97/ 001F” National Center for Environmental Health of research and Development, Washington, DC, USA.

Vezzulli, L., C. Pruzzo, and M. Fabiano, (2004) “Response of the bacterial community to in situ bioremediation of organic-rich sediments” Marine Pollution Bulletin, 49: 740-751.

Vidic, R.D., and F.G. Pohland, (1996) “Treatment walls” Technology Evaluation Report, Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA.

Ward, D.M., R. Weller, and M.M. Bateson, (1990) “16S rRNA sequences reveal numerous uncultured microorganisms in a natural community” Nature, 345: 63-65.

Wagner, M., B. Assmus, A. Hartmann, P. Hutzler, and R. Amann, (1994) “In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligo- nucleotide probes and confocal scanning laser microscopy”, Journal of Microscopy, 176: 181-187.

Watkin, G.E., E.J. Calabrese, and R.H. Harris, (1991) “Health risks associated with the remediation of contaminated soil” Hydrocarbon contaminated soil and groundwater, Lewis publishers, Inc., Michigan, 293-300.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top