|
References
1.Available from: http://www.eia.gov/todayinenergy/ 2.A. R. Jha: Solar Cell Technology and Applications, CRC Press, London (2010) 3.Rahim Munir, “Growth and Characterization of Cu2ZnSnSe4 (CZTSe) thin films by sputtering of binary selenides and its selenezation”, Korea Advanced Institute of Science and Technology, Korea (2012) 4.D. Abou-Ras, T. Kirchartz, U. Rau: Advanced Characterization Techniques for Thin Film Solar Cells, WILEY-VCH Verlag GmbH & Co. KGaA, Germany (2011) 5.P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”. Prog. Photovolt, Res. Appl. 19(7) (2011) 894 – 897. 6.J. Engman: Experimental Study Of Cu2znsn(Se,S)4 Thin Films For Solar Cell Applications, Uppsala Universitet Examensabete (2011). 7.Z. Lei, Q. Y. Huai, Z. Y. Long, G. X. Quan, S. D. Ming, S. C. Bin, “Facile synthesis of Cu2SnSe3 as counter electrodes for dye-sensitized solar cells”, Acta Phys, 29 (2013) 2339 - 2344. 8.D. H. Kuo, W. D. Haung, Y. S. Huang, J. D. Wu, Y. J. Lin, “Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2”, Thin Solid Films, 518 (2010) 7218 – 7221. 9.H. Zhang, M. Xie, S. Zhang, Y. Shiang, “Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors”, Journal of Alloys and Compounds, 602 (2014) 199 – 203. 10.P. Kevin, S. N. Malik, M. A. Malik, P. O’Brien, “The aerosol assisted chemical vapour deposition of SnSe and Cu2SnSe3thin films from molecular precursors”, Chem. Commun (2014). 11.D. H. Kuo, W. Wubet, “Mg dopant in Cu2SnSe3: An n-type former and a promoter of electrical mobility up to 387cm2V−1s−1”, Journal of Solid State Chemistry, 218 (2014) 44 – 49. 12.P. Wurfel: Physics of Solar Cells: From Principles to New Concepts, Wiley-WCH, Weinheim (2005). 13.T. Markvart, L. Castener: Solar Cells: Materials, Manufacture and Operation, Elsevier, Amsterdam (2005). 14.P. S. Vasekar, T. P. Dhakal, “Thin film solar cells using earth-abundant materials” (2013). 15.H. Katagiri, K. Jimbo, W.S Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, “Development of CZTS-based thin film solar cells”. Thin Solid Films, 517 (2009) 2455 – 2460. 16.G. Zoppi, I. Forbes, R.W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors”, Prog. Photovoltaics (2009). 17.K. Ito, T. Nakazawa, “Electrical and optical prpoerties of stannite type quarternary semiconductor thin-films”, J. Appl. Phys, 78(6) (1988) 2094. 18.K. M. Kim, H. Tampo, H. Shibata, S. Niki, “Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications”, Thin Solid Films, 536 (2013) 111 – 114. 19.G. S. Babu, Y. B. K. Kumar, Y. B. K. Reddy, V. S. Raja, “Growth and characterization of Cu2SnSe3 thin films”, Materials Chemistry and Physics, 96 (2006) 442 – 446. 20.M. Ibanez, D. Cadavid, U. A. Tamburini, R. Zamani, S. Gorsse, W. Li, A. M. Lopez, J. R Morante, J. Arbiol, A. Cabot, “Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals”. Journal of Materials Chemistry A, 1 (2013) 1421 – 1426. 21.G. H. Chandra, O. L. Kumar, R. P. Rao, S. Uthanna, “Influence of substrate and selenization temperatures on the growth of Cu2SnSe3 films”, Journal of Materials Science, 46 (2011) 6952 – 6959. 22.Z. Tang, Y. Nukui, K. Kosaka, N. Ashida, H. Uegaki, T. Minemoto, “Reduction of secondary phases in Cu2SnSe3 absorbers for solar cell application”, Journal of Alloys and Compounds, 608 (2014) 213 – 219. 23.C. Suryanarayana, M. G. Norton: X-ray Diffraction: A Practical Approach, Plenum Press, New York (1998). 24.B. D. Cullity: Elements Of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc, Massachusetts (2001). 25.Available from: http://mee-inc.com/sem.html 26.B. G. Yacobi: Semiconductor Materials, an Introduction to Basic Principles, Kluwer Academic (2003). 27.C. R. Brundle, C. A. Evans, S. Wilson: Encyclopedia Of Materials Characterization, Manning Publications Co, Greenwich (1992). 28.S. Wartewig: IR and Raman Spectroscopy, WILEY-VCH GmbH & Co. KGaA (2003). 29.P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar, V. S. Raja, “Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3–ZnSe thin films”, Applied Surface Science, 257 (2011) 8529 – 8534. 30.A. U. Ubale, Y. S. Sakhare, M. V. Bhute, M. R. Belkhedkar, A. Singh, “Size-dependent structural, electrical and optical properties of nanostructured iron selenide thin films deposited by Chemical Bath Deposition Method”, Solid State Sciences, 16 (2013) 134 – 142. 31.G. Marcano, C. Rincon, L. M. de Chalbaud, D. B. Bracho, G. S. Perez, “Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3”, Journal of Applied Physics, 90(4) (2001) 1848 – 1853. 32.J. Fan, W. C. Cabrera, L. Akselrud, I. Antonyshyn, L. Chen, Y. Grin, “New monoclinic phase at the composition Cu2SnSe3 and its thermoelectric properties”, Inorganic Chemistry, 52 (2013) 11067 – 11074. 33.R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides”, Acta Cryst, (1976) 751 – 766. 34.M. Monsefi, D. H. Kuo, “Influence of Mg doping on electrical properties of Cu(In,Ga)Se2 bulk materials”, Journal of Alloys and Compounds, 582 (2014) 547 – 551. 35.T. Maeda, S. Nakamura, T. Wada, “First principles calculations of defect formation in in-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4”, Japanese Journal of Applied Physics, 50 (2011).
|