|
[1] Dorigo, M., &; Gambardella, L. M. (1997). “Ant colony system: A cooperative learning approach to the traveling salesman problem”. Evolutionary Computation, IEEE Transactions on, 1(1), 53-66. [2] Kennedy, J., &; Eberhart, R. (1995, November). “Particle swarm optimization”. In Neural Networks, 1995. Proceedings., IEEE International Conference on (Vol. 4, pp. 1942-1948). IEEE. [3] Passino, K. M. (2002). “Biomimicry of bacterial foraging for distributed optimization and control”. Control Systems, IEEE, 22(3), 52-67. [4] Biswas, A., Das, S., Abraham, A., &; Dasgupta, S. (2010). “Stability analysis of the reproduction operator in bacterial foraging optimization”. Theoretical Computer Science, 411(21), 2127-2139. [5] Chu, Y., Mi, H., Liao, H., Ji, Z., &; Wu, Q. H. (2008, June). “A fast bacterial swarming algorithm for high-dimensional function optimization”. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on (pp. 3135-3140). IEEE. [6] Datta, T., Misra, I. S., Mangaraj, B. B., &; Imtiaj, S. (2008). “Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence”. Progress In Electromagnetics Research C, 1, 143-157. [7] Dasgupta, S., Das, S., Abraham, A., &; Biswas, A. (2009). “Adaptive computational chemotaxis in bacterial foraging optimization: an analysis”.Evolutionary Computation, IEEE Transactions on, 13(4), 919-941. [8] Yan, X., Zhu, Y., Zhang, H., Chen, H., &; Niu, B. (2012). “An Adaptive Bacterial Foraging Optimization Algorithm with Lifecycle and Social Learning”. Discrete Dynamics in Nature and Society, 2012. [9] Majhi, R., Panda, G., Majhi, B., &; Sahoo, G. (2009). “Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques”. Expert Systems with Applications, 36(6), 10097-10104. [10] Chatzis, S. P., &; Koukas, S. (2011). “Numerical optimization using synergetic swarms of foraging bacterial populations”. Expert systems with applications,38(12), 15332-15343. [11] El-Abd, M. (2012). “Performance assessment of foraging algorithms vs. evolutionary algorithms.” Information Sciences, 182(1), 243-263. [12] Kim, D. H., Abraham, A., &; Cho, J. H. (2007). “A hybrid genetic algorithm and bacterial foraging approach for global optimization”. Information Sciences,177(18), 3918-3937. [13] Biswas, A., Dasgupta, S., Das, S., &; Abraham, A. (2007). “Synergy of PSO and bacterial foraging optimization—a comparative study on numerical benchmarks”. In Innovations in Hybrid Intelligent Systems (pp. 255-263). Springer Berlin Heidelberg. [14] Shen, H., Zhu, Y., Zhou, X., Guo, H., &; Chang, C. (2009, June). “Bacterial foraging optimization algorithm with particle swarm optimization strategy for global numerical optimization”. In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation (pp. 497-504). ACM. [15] Gollapudi, S. V., Pattnaik, S. S., Bajpai, O. P., Devi, S., &; Bakwad, K. M. (2011). Velocity modulated bacterial foraging optimization technique (VMBFO).Applied Soft Computing, 11(1), 154-165. [16] Biswas, A., Dasgupta, S., Das, S., &; Abraham, A. (2007)., “A synergy of differential evolution and bacterial foraging optimization for global optimization,” Journal of Neural Network World, 17(6), 2007, pp. 607 – 626. [17] Chen, H., Zhu, Y., &; Hu, K. (2011, March). “Adaptive bacterial foraging optimization”. In Abstract and Applied Analysis (Vol. 2011). Hindawi Publishing Corporation. [18] Korani, W. M., Dorrah, H. T., &; Emara, H. M. (2009, December). “Bacterial foraging oriented by particle swarm optimization strategy for PID tuning”. InComputational Intelligence in Robotics and Automation (CIRA), 2009 IEEE International Symposium on (pp. 445-450). IEEE. [19] Shi, Y. (2001). “Particle swarm optimization: developments, applications and resources”. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on (Vol. 1, pp. 81-86). IEEE. [20] Pan, Q. K., Suganthan, P. N., Tasgetiren, M. F., &; Liang, J. J. (2010).” A self-adaptive global best harmony search algorithm for continuous optimization problems”. Applied Mathematics and Computation, 216(3), 830-848.
|