跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李國維
研究生(外文):Kuo-Wei Lee
論文名稱:改良式細菌覓食演算法
論文名稱(外文):Improved Bacterial Foraging Optimization
指導教授:高有成高有成引用關係
指導教授(外文):Prof. Yu-Cheng Kao
口試委員:高有成
口試委員(外文):Prof. Yu-Cheng Kao
口試日期:2013-07-04
學位類別:碩士
校院名稱:大同大學
系所名稱:資訊經營學系(所)
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:覓食優化細菌覓食演算法群體智慧
外文關鍵詞:foraging optimization.bacterial foraging algorithmsswarm intelligence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的目的是針對基本型細菌覓食演算法特性進行改良,新的細菌覓食演算法稱為改良式細菌覓食演算法(Improved bacterial foraging optimization, IBFO)。細菌覓食演算法是新的群體智慧方法,透過趨化、複製和淘汰遷徙三項操作來進行全域和區域隨機搜尋,此強大且有效的方法可用來解決複雜的現實世界最佳化問題;但是其有三個顯著缺點:參數過多造成應用上困難,翻滾方向由亂數產生而非資訊分享機制導引,和覓食步伐固定導致收斂不佳的問題。本研究將嚐試改善此三項缺點:基於減少設定參數值的基礎上提出獨立細菌概念、改良細菌吸引力,和自調適步伐值三種方法來優化解品質和搜尋能力。最後,利用七個連續最佳化的測試函數,進行四種實驗測試IBFO的績效,分別為關鍵參數實驗、群體智慧演算法比較實驗,並與其他兩種演算法進行比較實驗。從實驗結果和統計分析中可以明顯看出IBFO具有較優良的演算能力。
This paper proposes an improved approach involving bacterial foraging optimization algorithm (BFOA) behavior. The new algorithm is called improved bacterial foraging optimization (IBFO). BFOA is a new swarm intelligence technique. Three main BFOA operation are chemotaxis, reproduction and elimination-dispersal, which are applied to global and local random searches. This powerful and effective algorithm has been used to solve various real-world optimization problem. However , BFOA has several shortages: many parameters needed to be set ; tumble angles are generated randomly and a fixed chemotactic step size causing poor convergence. In this paper, we try to improve these shortages of BFOA base on reduce setting parameters. Finally, we compare the performance of IBFO with the classical BFOA, testing them on seven widely-used benchmark functions. The experimental result shows that the IBFO is very competitive and outperforms the BFOA.
誌謝 IV
摘要 V
表目錄 IX
圖目錄 X
第1章 簡介 1
1.1 研究背景和動機 1
1.2 研究目的 2
1.3 研究方法 2
1.4 論文架構 3
第2章 標準細菌覓食演算法 4
2.1 趨化操作 5
2.2 複製操作 6
2.3 遷徙淘汰操作 7
2.4 細菌吸引力 7
2.5 細菌覓食演算法參數簡介 8
第3章 文獻探討 9
3.1 細菌覓食演算法混合其他演算法之研究 9
3.2 細菌覓食演算法趨化與複製操作改良之研究 11
3.3 細菌覓食演算法參數優化之研究 13
3.4 細菌覓食演算法演化總結 13
第4章 改良式細菌覓食演算法 16
4.1 IBFO基本概念 16
4.2 獨立細菌操作 17
4.3 細菌吸引力 22
4.4 自調適步伐值機制 24
4.5 改良式細菌覓食演化流程 26
第5章 實驗和比較 29
5.1 連續最佳化的測試函數 29
5.2 關鍵參數實驗 31
5.3 群體智慧演算法比較實驗 34
5.4 ABFOA比較實驗 38
5.5 BFOLS比較實驗 43
第6章 結論 45
參考文獻 46
附錄A 連續最佳化的測試函數[20] 48
附錄B 群體智慧演算法比較實驗收斂圖 54
[1] Dorigo, M., &; Gambardella, L. M. (1997). “Ant colony system: A cooperative learning approach to the traveling salesman problem”. Evolutionary Computation, IEEE Transactions on, 1(1), 53-66.
[2] Kennedy, J., &; Eberhart, R. (1995, November). “Particle swarm optimization”. In Neural Networks, 1995. Proceedings., IEEE International Conference on (Vol. 4, pp. 1942-1948). IEEE.
[3] Passino, K. M. (2002). “Biomimicry of bacterial foraging for distributed optimization and control”. Control Systems, IEEE, 22(3), 52-67.
[4] Biswas, A., Das, S., Abraham, A., &; Dasgupta, S. (2010). “Stability analysis of the reproduction operator in bacterial foraging optimization”. Theoretical Computer Science, 411(21), 2127-2139.
[5] Chu, Y., Mi, H., Liao, H., Ji, Z., &; Wu, Q. H. (2008, June). “A fast bacterial swarming algorithm for high-dimensional function optimization”. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on (pp. 3135-3140). IEEE.
[6] Datta, T., Misra, I. S., Mangaraj, B. B., &; Imtiaj, S. (2008). “Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence”. Progress In Electromagnetics Research C, 1, 143-157.
[7] Dasgupta, S., Das, S., Abraham, A., &; Biswas, A. (2009). “Adaptive computational chemotaxis in bacterial foraging optimization: an analysis”.Evolutionary Computation, IEEE Transactions on, 13(4), 919-941.
[8] Yan, X., Zhu, Y., Zhang, H., Chen, H., &; Niu, B. (2012). “An Adaptive Bacterial Foraging Optimization Algorithm with Lifecycle and Social Learning”. Discrete Dynamics in Nature and Society, 2012.
[9] Majhi, R., Panda, G., Majhi, B., &; Sahoo, G. (2009). “Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques”. Expert Systems with Applications, 36(6), 10097-10104.
[10] Chatzis, S. P., &; Koukas, S. (2011). “Numerical optimization using synergetic swarms of foraging bacterial populations”. Expert systems with applications,38(12), 15332-15343.
[11] El-Abd, M. (2012). “Performance assessment of foraging algorithms vs. evolutionary algorithms.” Information Sciences, 182(1), 243-263.
[12] Kim, D. H., Abraham, A., &; Cho, J. H. (2007). “A hybrid genetic algorithm and bacterial foraging approach for global optimization”. Information Sciences,177(18), 3918-3937.
[13] Biswas, A., Dasgupta, S., Das, S., &; Abraham, A. (2007). “Synergy of PSO and bacterial foraging optimization—a comparative study on numerical benchmarks”. In Innovations in Hybrid Intelligent Systems (pp. 255-263). Springer Berlin Heidelberg.
[14] Shen, H., Zhu, Y., Zhou, X., Guo, H., &; Chang, C. (2009, June). “Bacterial foraging optimization algorithm with particle swarm optimization strategy for global numerical optimization”. In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation (pp. 497-504). ACM.
[15] Gollapudi, S. V., Pattnaik, S. S., Bajpai, O. P., Devi, S., &; Bakwad, K. M. (2011). Velocity modulated bacterial foraging optimization technique (VMBFO).Applied Soft Computing, 11(1), 154-165.
[16] Biswas, A., Dasgupta, S., Das, S., &; Abraham, A. (2007)., “A synergy of differential evolution and bacterial foraging optimization for global optimization,” Journal of Neural Network World, 17(6), 2007, pp. 607 – 626.
[17] Chen, H., Zhu, Y., &; Hu, K. (2011, March). “Adaptive bacterial foraging optimization”. In Abstract and Applied Analysis (Vol. 2011). Hindawi Publishing Corporation.
[18] Korani, W. M., Dorrah, H. T., &; Emara, H. M. (2009, December). “Bacterial foraging oriented by particle swarm optimization strategy for PID tuning”. InComputational Intelligence in Robotics and Automation (CIRA), 2009 IEEE International Symposium on (pp. 445-450). IEEE.
[19] Shi, Y. (2001). “Particle swarm optimization: developments, applications and resources”. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on (Vol. 1, pp. 81-86). IEEE.
[20] Pan, Q. K., Suganthan, P. N., Tasgetiren, M. F., &; Liang, J. J. (2010).” A self-adaptive global best harmony search algorithm for continuous optimization problems”. Applied Mathematics and Computation, 216(3), 830-848.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top