跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林晏
研究生(外文):Lin, Yen
論文名稱:進階雙反應多變量控制器應用於半導體產業CMP製程之R2R控制研究
論文名稱(外文):AN ADVANCE MULTIPLE-INPUT DUAL-OUTPUT (MIDO) RUN-TO-RUN (R2R) CONTROLLER IMPLEMENTATION FOR CMP PROCESS OF SEMICONDUCTOR MANUFACTURING
指導教授:范書愷范書愷引用關係
指導教授(外文):Fan, Shu-Kai S.
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:91
中文關鍵詞:雙反應多變量平坦化製程半導體產業雙反應系統
外文關鍵詞:Multiple Input Dual OutputCMP ProcessSemiconductor ManufacturingDual Response Systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:763
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:4
本研究的主要目的,在於提出一個具處理雙反應多變量 (multiple-input dual-output,MIDO) 且適用於R2R (Run-to-Run) 製程的最佳化控制器。本控制器稱為「雙反應最適化控制器」(adaptive dual-response optimizing controller,ADROC);該控制器在製程批次行進間,可不斷地提供製程 (機台) 最適合的操作參數 (recipe),讓製程反應值達到最佳化的要求。本控制器針對二階 (second-order) 的多變量非線性製程模型加以設計,但限制製程模型所關注之反應值必須簡化為兩個:主要反應值與次要反應值。
在實際製程中,製程常因為機台需要暖機或是長久使用之損耗,甚至電壓、電流等外部因素,導致製程隨著時間有飄移 (drift) 的現象,這使得製程在控制上,為了達到最佳化的需求,必須因應這些變化不停地修正操作參數。如此,ADROC控制器在設計上,嵌入了ST控制器的線上估計技術 (on-line estimation technique) ,在機台行進間將控制模型的參數做出最適合的調整,然後整合雙反應系統演算法 (dual response systems) 計算出最佳的操作參數回饋給機台。除此之外,本研究為了增進ADROC的控制效能並且避免過度控制的疑慮,提出「即時反應過濾器」(responsive filter) 嵌入ADROC中,進一步提高ADROC實務製程上之適用性。
在模擬實作的部分,本研究針對半導體製程中的晶圓平坦化製程,CMP製程,來做為ADROC的模擬實作模型。由於CMP製程中,晶圓的移除率 (removal rate) 以及表面的不平整度 (within-wafer non-uniformity) 是極重要的兩個反應值,所以本研究藉由此具雙反應值特性的R2R製程,來測試ADROC對於雙反應多變量製程模型的控制表現。
This research presents an optimization-based, multiple-input dual-output Run-to-Run (R2R) controller for chemical mechanical planarization (CMP) process of semiconductor manufacturing. This controller, termed adaptive dual-response optimizing controller (ADROC), can serve as a process optimizer as well as a recipe regulator between consecutive runs of wafer fabrication. It is assumed that the equipment model could be appropriately described by a pair of second-order polynomial (transfer) functions in terms of a set of control variables. Of practical relevance is to consider a drifting effect in the equipment model since in common semiconductor practice the process tends to drift due to machine ageing and tool wearing. Between production batches, the “true” process parameters in the underlying model are, in essence, time varying or initially unknown. In the ADROC, an on-line estimation technique is implemented in a self-tuning (ST) control manner for the adaptation purpose. Subsequently, an ad hoc global optimization algorithm based on the dual response approach, arising from the response surface methodology (RSM) literature, is used to seek the optimum recipe (i.e., the optimal values of control variables for the set-point of machine tool control) within the acceptability region for the execution of next run. In addition, a responsive filter specifically designed for the ADROC will be activated to compensate for the over-control problem and drifting dynamic as long as drifting effects are found to occur significantly in the process under control. The main components of the ADROC are described and its control performance will be assessed. Three different chemical mechanical planarization (CMP) processes will be demonstrated through simulated (constructed upon the real equipment models) to illustrate the ADROC in the research. It reveals from the simulation analysis that the ADROC can provide excellent control actions for the MIDO R2R situations even though the process exhibits complicated, nonlinear interaction effects between control variables, and the drifting disturbances.
TABLE OF CONTENTS
摘要........................................................ii
ABSTRACT...................................................iii
TABLE OF CONTENTS............................................v
LIST OF FIGURES AND TABLES.................................vii
ABBREVIATIONS.............................................viii
Chapter
1. INTRODUCTION..............................................1
1.1 Semiconductor Manufacturing Process......................4
1.2 Run-to-Run Control and Its Problem Statement.............5
1.3 Research Objective.......................................7
1.4 Organization of the Dissertation.........................7
2. A REVIEW OF EXISTING RUN-TO-RUN CONTROLLERS AND DUAL RESPONSE SYSTEMS.............................................8
2.1 SPC/EPC Integration......................................9
2.2 The Run-to-Run Controller Literature Review.............10
2.3 Exponential Weighted Moving Average Based (EWMA-based) Controller..................................................13
2.4 Multivariate Self-Tuning (ST) Controller................20
2.4.1 R2R Process Modeling..................................21
2.4.2 Numerical Optimization Algorithms to Self-tuning Control.....................................................24
2.4.3 Recursive Least Squares (RLS) Algorithm...............26
2.4.4 Discussion of Self-tuning Controller..................28
2.5 Dual Response Systems...................................29
2.6 Summary.................................................31
3. ADAPTIVE OPTIMIZING CONTROL..............................32
3.1 Static Model Description................................33
3.1.1 Optimality Condition in Dual Response Systems.........33
3.1.2 Degeneracy in Dual Response Systems...................36
3.1.3 A Decomposition Technique for Degenerate Problem.....................................................38
3.1.4 Dual ResponseⅡ (DR2) Algorithm.......................41
3.2 Control Model Description...............................43
3.2.1 Multiple-Input Dual-Output Control Model..............44
3.2.2 On-Line Estimation Technique..........................46
3.2.3 ADROC Algorithm.......................................48
3.2.4 Responsive Filter in the ADROC........................50
3.2.5 Full ADROC Algorithm..................................52
3.3 Experimental Study......................................54
4. ADROC PERFORMANCE EVALUATION.............................56
4.1 Chemical Mechanical Planarization Process...............56
4.2 Performance Measures....................................58
4.3 An Almost Linear 4x2 CMP Process........................60
4.4 A Nonlinear 3x2 CMP Process.............................74
4.5 A Nonlinear 6x2 CMP Process.............................78
4.6 4x2 CMP Process Simulation with Responsive Filter.......81
5. CONCLUSIONS AND FUTURE RESEARCH..........................83 5.1 Conclusions.............................................83
5.2 Future Research.........................................85
REFERENCE...................................................87
REFERENCE
Åström, K. J. (1970). Introduction to Stochastic Control Theory, Academic Press: San Diego, CA.
Åström, K. J. and Wittenmark, B. (1973). On Self-Tuning Regulators. Automatica 9: 185-199.
Åström, K. J. and Wittenmark, B. (1995). Adaptive Control, 2nd edition, Addison-Wesley: Reading, Mass.
Åström, K. J. and Wittenmark, B. (1997). Computer-Controlled Systems: Theory and Design, 3rd edition, Prentice Hall: Englewood Cliffs, NJ.
Box, G. E. P. and Jenkins, G. M. (1962). Some Statistical Aspects of Adaptive Optimization and Control. J R Stat Soc B 24: 243-297.
Box, G. E. P. and Jenkins, G. M. (1963). Further Contributions to Adaptive Quality Control: Simultaneous Estimation of Dynamics: Nonzero Costs. Bulletin Int Stat Inst 34: 943-974.
Box, G. E. P. and Luceño, A. (1995). Discrete Proportional-integral Control with Constrained Adjustment. J R Stat Soc D 44: 479-495.
Box, G. E. P. and Luceño, A. (1997). Statistical Control by Monitoring and Feedback Adjustment. Wiley: New York, NY.
Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control, 3rd edition, Prentice Hall: Englewood Cliffs, NJ.
Butler, S. W. and Stefani, J. A. (1994). Supervisory Run-to-Run Control of Polysilicon Gate Etch Using In Situ Ellipsometry. IEEE Trans Semiconduct Manufact 7: 193-201.
Campbell W. J., Firth, S. K., Toprac A. J. and Edgar T. F. (2002). A Comparison of Run-to-Run Control Algorithms. Proc Amer Cont Conf 8: 2150-2155.
Chen, A. and Guo, R-S. (2001). Age-Based Double EWMA Controller and Its Application to CMP Process. IEEE Trans Semiconduct Manufact 14: 11-19.
Conte, S. D. and de Boor, C. (1980). Elementary Numerical Analysis, 3rd edition, McGraw-Hill: New York, NY.
del Castillo, E. (1996). A Multivariate Self-Tuning Controller for Run-to-Run Process Control Under Shift and Trend Disturbances. IEE Trans 28: 1011-1021.
del Castillo, E. (1999). Long Run and Transient Analysis of a Double EWMA Feedback Controller. IEE Trans 31: 1157-1169.
del Castillo, E. (2001). Some Properties of EWMA Feedback Quality Adjustment Schemes for Drifting Disturbances. J Qual Tech 33: 153-166.
del Castillo, E. and Hurwitz, A. M. (1997). Run-to-Run Process Control: Literature Review and Extensions. J Qual Tech 29: 184-496.
del Castillo, E. and Montgomery, D. C. (1993). A Nonlinear Programming Solution to the Dual Response Problem. J Qual Tech 25: 199-204.
del Castillo, E. and Yeh, J-Y. (1998). An Adaptive Run-to-Run Optimizing Controller for Linear and Nonlinear Semiconductor Processes. IEEE Trans Semiconduct Manufact 11: 285-295.
del Castillo, E., Fan, S-K. S. and Semple, J. (1997). The Computation of Global Optima in Dual Response Systems. J Qual Tech 29: 347-353.
del Castillo, E., Fan, S-K. S. and Semple, J. (1999). Optimization of Dual Response Systems: A Comprehensive Procedure for Degenerate and Nondegenerate Problems. Euro J Oper Res 112: 174-186.
Deming, W. E. (1986). Out of the Crisis, Center for Advance Engineering Study, MIT Press, Cambridge, MA.
Draper, N. R. (1963). Ridge Analysis of Response Surfaces. Technometrics 5: 469-479.
Fan, S-K. S. (2000). A Generalized Global Optimization Algorithm for Dual Response Systems. J Qual Tech 32: 444-456.
Fan, S-K. S. (2000). Quality Improvement of Chemical-mechanical Wafer Planarization Process in Semiconductor Manufacturing Using a Combined Generalized Linear Modeling─Nonlinear Programming Approach. Int J Prod Res 38: 3011-3029.
Fan, S. K. and Lin, Y. (2004). A Ridge Optimizing Quality Controller for Semiconductor Manufacturing Processes. Proceedings of the 33rd International Conference on Computers and Industrial Engineering, March 25-27, Jeju, Korea (CIE712).
Fan, S-K. S. (2002). A Multiple-Input Single-Output (MISO) Ridge Optimizing Quality Controller for Semiconductor Manufacturing Processes. Technique Paper, Department of Industrial Engineering Management, Yuan-Ze University, Taoyuan County, Taiwan 320.
Fan, S-K. S., Jiang, B. C., Jen, C. H. and Wang, C. C. (2002). SISO Run-to-Run Feedback Controller Using Triple EWMA Smoothing for Semiconductor Manufacturing Processes. Int J Prod Res 40: 3093-3120.
Golden, M. P. and Ydstie, B. E. (1989). Adaptive Extremum Control Using Approximate process Models. AIChE J 35: 1157-1169.
Golub, G. H. and van Loan, C. F. (1984). Matrix Computations, The John Hopkins University Press: Baltimore, MD.
Ingolfsson, A. and Sachs, E. (1993). Stability and Sensitivity of an EWMA Controller. J Qual Tech 25: 271-287.
Jiang, B. C., Jen, C. H. and Fan, S-K. S. (2003). A General Run-to-Run Framework Using Self-Tuning Control for Multiple-Input Multiple-Output Processes. To appear in Int J Prod Res.
Khuri, A. I. and Cornell, J. A. (1996). Response Surface: Designs and Analyses, 2nd edition, Marcel Dekker: New York, NY.
Kolenkow, R. and Nagahara, R. (1992). Chemical-Mechanical Wafer Polishing and Planarization in Batch Systems. Sol St Tech 35: 112-114.
Lin, D. K. and Tu, W. (1995). Dual Response Surface Optimization. J Qual Tech 27: 34-39.
Luenberger, D. G. (1984). Linear and Nonlinear Programming, 2nd edition, Addison-Wesley: Reading, MA.
MacGregor, J. F. (1990). A Different View of the Funnel Experiment. J Qual Tech 22: 255-259.
Montgomery, D. C., Keats, J. B., Runger, G. C. and Messina, W. S. (1994). Integrating Statistical Process Control and Engineering Process Control. J Qual Tech 26: 79-87.
Moré, J. J. and Sorensen, D. C. (1983). Computing a Trust Region Step. SIAM J Sci Stat Comput 4: 553-572
Moyne, J., del Castillo, E. and Hurwitz, A. M. (2001). Run-to-Run Control in Semiconductor Manufacturing, CRC, Boca Raton, Florida.
Mullins, J. A., Campbell, W. J. and Stock, A. D. (1997). An Evaluation of Model Predictive Control in Run to Run Processing in Semiconductor Manufacturing. in Ghanbari, A. and Toprac, A., editors, Process, Equipment, and Materials Control in Integrated Circuit Manufacturing Ⅲ, SPIE 182-189.
Myers and Montgomery (2002). Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edition, Wiley, Inc, CA.
Myers, R. H. and Carter, W. H. (1973). Response Surface Techniques for Dual Response System. Technometrics 15: 301-317.
Nanz, G. and Camilletti, L. E. (1995). Modeling of Chemical-mechanical Polishing: A Review. IEEE Trans Semiconduct Manufact 8: 382-389.
Nash, S. G. and Sofer, A. (1996). Linear and Nonlinear Programming, McGraw-Hill, Inc.
Patel, N. S. and Jenkins, S. T. (2000). Adaptive Optimization of Run-to-Run Controller: The EWMA Example. IEEE Trans Semiconduct Manufact 13: 97-107.
Patrick, W. J., Guthrie, W. L., Standley, C. L. and Schiable, P. M. (1991). Application of Chemical Mechanical Polishing to the Fabrication of VLSI Circuit Interconnections. J Electrochem Soc 138: 1778-1784.
Rawlings, J. B. and Muske, K. R. (1993). The Stability of Constrained Receding Horizon Control. IEEE Trans Auto Cont 38: 1512-1516.
Sachs, E., Hu, A. and Ingolfsson, A. (1995). Run by Run Process Control: Combining SPC and Feedback Control. IEEE Trans Semiconduct Manufact 8: 26-43
Seborg, D. E., Edgar, T. F. and Shah, S. L. (1986). Adaptive Control Strategies for Process Control: A Survey. AIChE J 32: 881-913.
Semple, J. (1997). Optimality Conditions and Solution Procedures for Nondegenerate Dual Response Systems. IEE Trans 29: 743-752.
Shah, S. and Cluett, W. R. (1991). Recursive Least Squares Based Estimation Schemes for Self-Tuning Control. Can J Chem Eng 69: 89-96.
Steigerwald, J. M., Murarka S. P. and Gutmann R. J. (1997). Chemical Mechanical Planarization of Microelectronic Materials, Wiley: New York.
Tseng, S. T., Chou, R. J. and Lee, S. P. (2002). A Study of Multivariate EWMA Controller. IEE Trans 34: 541-549.
Wellstead, P. E. and Scotson, P. B. (1990). Self-Tuning Extremum Control. IEE Proc D 137: 165-175.
Yeh, J-Y. (1997). Object-Oriented Design and Implementation of An Optimizing Run-to-Run Quality Controller for Semiconductor Manufacturing Process. Ph.D. dissertation, Dept. of Industrial and Manufacturing Systems Engineering, The University of Texas at Arlington, Arlington, TX.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文