|
[1]B. Murmann, “ADC Performance Survey 1997−2018, [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html. [2]Analog Devices Inc., The Data Conversion Handbook. W. Keater, ed. Burlington, MA: Newnes, 2005. [3]M.Gustavsson, J. Wikner, N.Tan, CMOS data converters for communications, Kluwer Academic Publishers, 2000. [4]C. C. Lee and M. P. Flynn, “A SAR-assisted two-stage pipeline ADC,IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859869, Apr. 2011. [5]B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250Ms/s 2× interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS, in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 466–468. [6]B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “ A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS, in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1–2. [7]W. Liu et al., “A 12-bit 50-MS/s 3.3 mW SAR ADC with background digital calibration, in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4. [8]J. A. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David and C. Brenneman, “All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC Architecture, in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2355–2365, Oct. 2011. [9]R. Kapustsa, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473. [10]C. Hsu et al., “A 12-b 40-MS/s Calibration-Free SAR ADC, in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 3, pp. 881–890, March 2018. [11]H. Tai, Y. Hu, H. Chen and H. Chen, “11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197. [12]J. L. McCreary et al., “All-MOS charge distribution analog-to-digital conversion techniques–part I, IEEE J. Solid-State Circuits, vol. SSC10, no. 6, pp. 371379, Dec. 1975. [13]S. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-um CMOS, in IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 26692680, Dec. 2006. [14]Y. Lim and M. P. Flynn, “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC, in IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 29012911, Dec. 2015. [15]P. Harpe, E. Cantatore and A. v. Roermund, “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction, in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 270271. [16]T. Morie et al., “A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise, in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 272273. [17]C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure, IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010. [18]R. J. Van De Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters, IEEE J. Solid-State Circuits, vol. 11, no. 6, pp. 795–800, Dec. 1976. [19]Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS, IEEE Transactions on Circuits and Systems I, vol. 60, no. 3, pp. 570–581, Mar. 2013. [20]C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation, in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387. [21]V. Tripathi and B. Murmann, “Mismatch characterization of small metal fringe capacitors, in Proc. IEEE CICC, 2013, pp. 1–4. [22]B. P. Ginsburg, and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC, in Proc. IEEE ISCAS, 2005, pp. 184–187. [23]B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC, IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739-747, April 2007. [24]Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500-KS/s low power SAR ADC for bio-medical applications, in IEEE A-SSCC, 2007, pp. 228–231. [25]C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13µm CMOS process, in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2009, pp. 236–237. [26]V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency, Electron. Lett., vol. 46, no. 9, pp. 620–621, 2010. [27]Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS, IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010. [28]A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter, IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599–606, May 1999. [29]D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, “A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time, in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 314–605. [30]C. Hou, S. Chang, H. Wu, H. Hu and E. Cun, “An 8-bit 400-MS/s calibration-free SAR ADC with a pre-amplifier-only comparator, International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2017, pp. 1–4. [31]G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS, in IEEE A-SSCC. 2013, pp. 289−292. [32]H. Zumbahlen, Staying well grounded, Analog Dialogue 46-06 June 2012. [33]M. Ding,P. Harpe, Y.-H. Liu, B. Busze, K. Philips, and H. Groot, “A 5.5fJ/conv-step 6.4MS/s 13b SAR ADC Utilizing a Redundancy-Facilitated Background Error-Detection-and-Correction Scheme, in IEEE ISSCC Dig. Tech. Papers, pp. 460−461, Feb. 2015. [34]C. Liu, M. Huang and Y. Tu, “A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC, in IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016. [35]S. Haenzsche, S. Hoppner, G. Ellguth, and R. Schuffy, “A 12bit 4MS/s SAR ADC with Configurable Redundancy in 28nm CMOS Technology, in IEEE Trans. Circuits and Systems-II, vol.61, no. 11, pp. 835−839, Aug. 2014. [36]G. Huang, S. Chang, C. Liu and Y. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications, in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783−2795, Nov. 2012. [37]C. Liu, S. Chang, G. Huang, Y. Lin and C. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS, 2010 Symposium on VLSI Circuits, Honolulu, HI, 2010, pp. 241−242. [38]C. Liu, S. Chang, G. Huang, Y. Lin and C. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS, 2010 Symposium on VLSI Circuits, Honolulu, HI, 2010, pp. 241−242. [39]C. Kung, C. Huang, C. Li and S. Chang, “A Low Energy Consumption 10-Bit 100kS/s SAR ADC with Timing Control Adaptive Window, 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1−4. [40]Y. Chung, C. Yen, P. Tsai and B. Chen, “A 12-bit 40-MS/s SAR ADC With a Fast-Binary-Window DAC Switching Scheme, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 10, pp. 1989−1998, Oct. 2018.
|